
X-Plane: A High-Throughput Large-Capacity 5G UPF
Yunzhuo Liu1,2∗, Hao Nie2,3∗, Hui Cai2, Bo Jiang1†, Pengyu Zhang2,
Yirui Liu2, Yidong Yao2, Xionglie Wei2, Biao Lyu2,4, Chenren Xu3,

Shunmin Zhu2,5, Xinbing Wang1
1Shanghai Jiao Tong University, 2Alibaba Group, 3Peking University,

4Zhejiang University, 5Tsinghua University

ABSTRACT

Cloud providers, such as AWS and Azure, have started pro-
viding 5G services on their cloud infrastructure. In this pa-
per, we present the design and implementation of X-Plane,
a system that uses commercial programmable ASICs and
DRAM servers on today’s cloud infrastructure to implement
high-performance 5G User Plane Function (UPF). Building
X-Plane is hard because we need to address the following
challenges: consistency issues when concurrently accessing
UPF state data, slow UE table lookup due to repetitive and
numerous Packet Detection Rule (PDR) matching, and the
need to handle out-of-order packets from disconnected UEs.
X-Plane addresses these challenges by designing three novel
technologies: concurrent state data access protocol, fast flow
table and paging buffer for handling out-of-order packets.
We demonstrate its feasibility and practicality with our im-
plementation on a Tofino-based programmable ASIC. Our
evaluation shows that X-Plane can support over ∼490Gbps
throughput per ASIC pipeline, over 10 million UEs, and finish
packet processing within predictable ∼4 us on average.

CCS CONCEPTS

• Networks → Mobile networks; Programmable net-

works.

KEYWORDS

5G UPF, RDMA, Programmable ASIC

∗Yunzhuo Liu and Hao Nie are equal contributors to this work and desig-
nated as co-first authors. †Bo Jiang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9990-6/23/10. . . $15.00
https://doi.org/10.1145/3570361.3613267

ACM Reference Format:

Yunzhuo Liu1,2∗, HaoNie2,3∗, Hui Cai2, Bo Jiang1†, Pengyu Zhang2,,
Yirui Liu2, Yidong Yao2, Xionglie Wei2, Biao Lyu2,4, Chenren Xu3,,
Shunmin Zhu2,5, XinbingWang1 . 2023. X-Plane: AHigh-Throughput
Large-Capacity 5G UPF. In The 29th Annual International Conference
on Mobile Computing and Networking (ACM MobiCom ’23), Octo-
ber 2–6, 2023, Madrid, Spain. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3570361.3613267

1 INTRODUCTION

Cloud providers, such as AWS and Azure, have started run-
ning 5G network on their cloud infrastructure [1]. In this
paper, we look at how to build 5G User Plane Function (UPF)
on top of existing cloud infrastructure. The 5G UPF is a key
module of 5G network, which is responsible for handling
user plane traffic, such as traffic engineering, billing, and
quality of service (QoS).
One way to run 5G UPF in the cloud is using software-

based UPF, which is provided by vendors such as ZTE [9,
31] and Ericsson [7]. Such systems can be easily deployed
on today’s cloud infrastructure. However, this approach is
expensive, as we need a large number of servers to support
the amount of traffic in typical 5G scenarios. In addition, the
OS scheduling introduces uncertainty in packet processing
time, which can easily result in a high latency that does not
meet the requirement of 5G application.
Considering the disadvantages of software-based UPF, a

body of recent work [14, 18–20, 33] attempt to build 5G UPF
using programmable ASICs. Such programmable ASICs can
achieve very high speed in packet processing and are widely
used in today’s cloud infrastructure [23].While this approach
has demonstrated great potential, previous solutions still
suffer the following limitations.

First, most of the existing systems based on programmable
ASICs [14, 18, 19, 33] lack the support of key UPF functions,
including traffic accounting, metering and data buffering.
The reason behind is that the logic of these UPF functions
is very complicated, and programmable ASICs are designed
primarily for simple packet processing operations such as for-
warding and dropping, rather than supporting complicated
service-level logic.

1

https://doi.org/10.1145/3570361.3613267
https://doi.org/10.1145/3570361.3613267
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3570361.3613267&domain=pdf&date_stamp=2023-10-02

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Yunzhuo Liu et al.

Second, none of the existing systems can achieve high
throughput, large capacity and low latency at the same time,
despite the fact that they focus only on basic packet forward-
ing functionalities. For example, Kundel [19] only supports
∼100Gbps traffic. HybridUPF [18] has a 350us latency (very
high for UPF) on its slow path. Zhou et al. [33] can only
support one thousand flows, several orders of magnitude
smaller than the need of operators.

X-Plane targets at supporting key UPF functions, includ-
ing counting, metering, PDR parsing, and UE paging, while
achieving high throughput, large capacity and low latency at
the same time. Achieving this goal is extremely hard because
of the following reasons.
• Limited capacity: Programmable ASICs only haveO(10M)
on-device memory. Our empirical measurement with a
Tofino-based programmable ASIC shows that the on-device
memory can store only about O(1M) flow entries, much
smaller than the need of 5G networks [31]. One way to
address this problem is using the programmable ASIC
plus external DRAM architecture, where the forwarding
rules can be stored on the external DRAM. TEA [16] is an
example of this architecture. X-Plane adopts the same ar-
chitecture and focuses on supporting UPF functionalities
on top of it.

• High throughput VS counting/metering: Since pro-
grammable ASICs have limited on-device memory and
cannot store counters and meters of each UE, the only
way to support counting and metering is using the pro-
grammable ASIC plus external DRAM architecture like
TEA [16]. However, it is challenging to update the state
of counters and meters at the external DRAM without
tampering throughput. For example, the solution in [25]
manages to support state updates only at the extremely
high cost of over 87.5% degradation in throughput.

• Low latency VS PDR parsing: To identify the action to
apply to an ingress packet, the UPF has to search through
the UE table. However, this operation is sluggish because,
even when the corresponding UE entry is located, the UPF
still needs to scan the PDRs within the entry to identify
the appropriate actions for the flow. This process may
incur large latency as the number of PDR rules in a UE
table entry can be substantial.

• Handling out-of-order packets duringUEpaging:Out-
of-order packets occur when a UE disconnects and recon-
nects to the network. This happens because the UPF must
buffer packets transmitted to the UE while it was discon-
nected from the network. When the UE reconnects, the
buffered packets and newly arrived packets may become
mixed up, leading to out-of-order problems.

Paging

Internet
DBUFRadio

release
Packet
Routing

GTP
Tunnelling

Control Plane

Traffic
Accounting QoS

UPF
Packet Buffering

1 2 3…

Base Station

Base Station

Idle UE

UE

UE
5G Core

UPF-C

Figure 1: UPF is the user plane in a 5G core that routes

the bi-directional traffic between a UE and the Inter-

net.

X-Plane addresses above challenges by introducing the
following novel technologies. First, we design a protocol
that facilitates simultaneous access and update of stateful
data in an external DRAM. Our design avoids adding locks
on the external DRAM, which is critical for achieving high
throughput. Second, X-Plane speeds up the sluggish UE table
lookup by creating a fast table. The basic idea is to utilize
the footprints of the first packet in each flow to determine
the actions on subsequent packets in the same flow. This
significantly reduces table lookup latency by eliminating
repetitive and slow UE table lookup. Third, X-Plane designs
a mechanism that buffers packets when a UE disconnects
from networks and automatically sends the buffered packets
to the UEwhen it re-connects to networks. More importantly,
the order of packets is preserved meaning that X-Plane
eliminates out-of-order packets that are present in many
previous systems.
We implement and evaluate X-Plane on a server cluster

built based on Tofino and CX6. Our empirical evaluation
shows that X-Plane can achieve the following performance.
• Performance: X-Plane can support ∼490 Gbps through-

put per ASIC pipeline, over O(10M) flows, and finish packet
processing within predictable ∼4 us on average. As far as
we know, X-Plane is the first system that supports high
throughput, large capacity and low latency UPF on pro-
grammable ASIC.

• UPF functionality: X-Plane supports most of the key
UPF functions, such as counting, metering, QoS, etc. In ad-
dition, when a UE disconnects from the network, X-Plane
buffers data intended for this UE and pushes the data to
the UE later when the UE reconnects to the network. X-
Plane also ensures the order of packets even when the
idle UE disconnects from the network.
In summary, we make the following two contributions.

First, we prove it feasible to build a UPF with large capacity
on top of memory resource limited programmable ASICs.
Second, we show that it is possible to support UPF functional-
ities and states, such as counting and metering on a stateless

2

X-Plane: A High-Throughput Large-Capacity 5G UPF ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

programmable ASIC. We open source X-Plane [30]. This
work conforms to the IRB policies (if any) of our institution.

2 BACKGROUND

2.1 5G Core User Plane Function (UPF)

Figure 1 shows a 5G core User Plane Function (UPF), which
is responsible for routing bi-directional IP traffic between
the base stations and the Internet. The routing rules are de-
termined by the 5G core control plane, which sends the rules
to UPF-C via Packet Forwarding Control Protocol (PFCP)
messages. UPF-C parses PFCP messages and configures the
rules on UPF. In addition to IP packet routing, the UPF also
performs several key functions, such as traffic usage account-
ing, QoS control and data buffer for the UEs in idle mode.
These functions are essential for ensuring that the UPF traffic
routing meets the requirements of the operators. We explain
each of these key functions below.
• Traffic accounting: The UPF keeps track of data bytes
transmitted and received by each user device. Operators
use such data usage information for charging their cus-
tomers, represented as User Ends (UEs).

• QoS handling: The UPF uses various mechanisms to en-
force QoS policies, such as rate limiting and traffic shaping.
These mechanisms ensure that UE data packets are deliv-
ered with the required level of performance while not
causing network congestion and overload. The enforce-
ment of QoS policies can be executed at the UE level, UE
session level, and UE flow level.

• Data buffer for disconnected UE: The UPF needs to
buffer the data from the Internet to a UE when the UE is
disconnected from the network due to sleep or handover.
Once the UE reconnects, the UPF sends the buffered data
to the UE and resumes normal IP packet forwarding.
The above functions are defined in PDRs. As UEs attach,

move, and detach, the 5G core control plane installs, changes,
and removes PDRs by sending Packet Forwarding Control
Protocol (PFCP) messages to UPF-C. UPF-C parses the PFCP
messages and stores PDRs to a lookup table named UE table.
To identify the action to apply to an ingress packet, the UPF
searches through the UE table to identify the matched PDR.

2.2 Existing Programmable ASIC based

UPF

The implementation of existing programmable ASIC based
UPF systems[18–20, 33] rely heavily on the on-ship resources.
They implement counting and metering using internal coun-
ters and meters or registers, which consume the on-chip
Static Random-Access Memory (SRAM). For the matching of
PDRs, existing systems store the PDRs in Ternary Content-
Addressable Memory (TCAM), a type of resource scarcer

Programmable ASIC

 External DRAM Servers
RDMA Write

 Table
Rule Packet
Rule

RDMA Read

...

A Lookup
request

Ingress Packet Egress Packet

1
2 21

Figure 2: TEA uses external DRAM to extend pro-

grammable ASIC memory and stores rules with five-

tuple keys

than SRAM. TCAM enables fast match of PDRs by searching
the entries in parallel. Relying on on-ship resources simpli-
fies the design of UPF, but the SRAM and TCAM can only
support a limited number of flows that does not satisfy the
need of 5G UPF [31]. As a result, existing systems redirect a
flow to CPU server for processing when the on-chip mem-
ory is not enough to store the corresponding PDRs or coun-
ters. Although some systems [18] propose optimized flow
offloading policies, e.g., offloading high-bandwidth flows to
be processed on ASIC, a large ratio of traffic, e.g., >50% [18],
can still go to the CPU path and hinder performance.

2.3 Programmable ASIC + External DRAM

Extending the memory of programmable ASIC with external
DRAM has been explored by TEA [16]. TEA uses the external
DRAM to store five-tuple rules and demonstrates how to
perform a lookup of the external table. As shown in Figure 2,
to achieve high lookup throughput and low lookup latency,
TEA uses RDMA to access the rules in the DRAM server. Each
lookup consists of two consecutive RDMA requests, i.e., an
RDMA Write and an RDMA Read. An entry in the external
table consists of the rule and a space reserved for temporally
storing the packet. During the lookup, as the programmable
ASIC lacks the ability to hold the packet, the packet is firstly
stored to the reserved space by the first RDMA Write, then
the followed RDMA Read fetches the stored packet back to
the programmable ASIC together with the rule.

Such architecture enjoys the advantage that the memory
can be easily enlarged according to needs by increasing the
amount of DRAM on external server. Meanwhile, the packet
processing is kept on the programmable ASIC, avoiding redi-
recting packets to, e.g., CPU, for processing when the pro-
grammable ASIC cannot store all rules. Thus it fully utilizes
the merits of hardware-based packet processing. However,
building a 5G UPF based on such architecture is not trivial.
The design of TEA only shows how to perform table lookup
of simple rules with five-tuple keys, and does not answer
how the external DRAM can be further utilized to support
functions like stateful data access, efficient PDR lookup and

3

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Yunzhuo Liu et al.

s2

Read Rsp

DRAM

t1

Read Req

s1t2 t3 s3

Write RspWrite Req

Pkt1 Pkt2
t4 s4

Pkt1 Pkt2

Counter 2000 0 300

Programmable
 ASIC

Figure 3: State data in-consistency issues when experi-

encing concurrent data access (read/write)

PDR Action Action Data
Key 1 Rate Limiter 100 Mbps
Key 2 Event Report UE IP

1.2.3.4:1234 ->
20.0.0.23:80 TCP EncapGTP TEID : 6789

wildcard Forwarding *

Packet
Src: 1.2.3.4:1234
Dst: 20.0.0.23:80
Proto: TCP

Match

Figure 4: Search a matched PDR in the UE table

in-order buffering required by 5G UPF. Next, we will explain
the challenges in detail.

3 CHALLENGES

3.1 Concurrent Access to Stateful Data

A 5G UPF needs to access (read/write) several types of data
that mark the states of a UPF, such as counters, meters, etc.
When reading and writing stateful data on external memory,
multiple concurrent read and write can cause data incon-
sistency. The concurrent data accesses are caused by the
delay in retrieving and writing back the state data due to the
separation of the programmable ASIC and external DRAM.
To illustrate how the concurrent accesses happen and cause
inconsistency, we use counters in Figure 3 as an example.

As shown in Figure 3, Pkt1 with a size of 300 bytes arrives
at t1, and triggers the read of the counter value (initially
0). The value is updated to 300 and then written back to
the external memory at t3. During the delay between the
counter is read and written back, Pkt2 arrives and triggers
another read, causing concurrent access to the counter. As
a result, the counter read triggered by Pkt2 obtains the old
counter value 0 instead of the updated value 300, leading to
inconsistency problem.
Essentially, the problem is due to that the operations on

the state data in external DRAM are not atomic. Conven-
tional solutions to similar problems rely on the use of locks
to ensure atomicity. However, programmable ASICs lack the
capability to store subsequent packets, e.g., Pkt2 in Figure 3,
in local SRAM and cannot suspend packet processing while
waiting for the lock release. Therefore, supporting concur-
rent access state data in external DRAM is an unaddressed
problem and it is vital to the implementation of 5G UPF.

Programmable ASIC

 External DRAM Servers
 Table

Rule Packet
Rule
...

UE Reconnected
Look up Table

... 1 2 3 ...

Buffer

Ingress Packet

Internet

54 6

UE Reconnected
Buffer Release

3 6 2 5 4 1

1 2
Packet 1,2,3 buffered

Before Reconnect

Egress Packet
UE

Figure 5: Out-of-order packets when a UE disconnects

from and re-connects to networks

3.2 Slow Table Lookup

The second challenge we need to address is the slow UE
table lookup in a UPF. To determine the appropriate action
(forward/drop/usage reporting/QoS enforcement) to be taken
on an ingress packet, the UPF needs to identify the PDR
within the UE table. However, this can be a time-consuming
process, as demonstrated in Figure 4. Consider an ingress
packet with the 5-tuple (1.2.3.4, 21.22.23.24, 1234, 8080, TCP),
which matches the third entry of the UE table. To determine
the correct operation (forward/drop) for this packet, the UPF
should further find the matched PDR. However, matching
PDR can be a slow and bandwidth consuming process due
to the following reason.

Each UE table entry can have a list of PDRs instead of just
one. The UPF must check each PDR rule within this entry,
following priority from high to low. Consequently, many
rounds of table lookup to external DRAM are incurred in
order to match a PDR. In our experiments, we show that one
lookup incurs a latency about 3us. Although the latency of
one lookup is relatively low, too many rounds of lookup can
still lead to high latency. Also, recall the process in Figure 2,
the packet needs to be stored into and fetched back from the
external DRAM in each lookup, many rounds of lookup can
cause high bandwidth consumption.

3.3 Out-of-Order Packets

The third challenge we need to address is handling out-of-
order packets. The ability to maintain the order of packets is
an essential characteristic of UPFs, ensuring that the order of
ingress packets is the same as that of egress packets. When
implementing UPF on programmable ASICs, out-of-order
packets can occur in the UE paging scenario where a UE
disconnects and reconnects to networks.

When a UE goes into idle mode and becomes disconnected
from the network, the UPF must store the downlink packets
intended for that UE in its buffer, as illustrated by (pkt_1,
pkt_2, pkt_3) in Figure 5. Using the programmable ASIC +

4

X-Plane: A High-Throughput Large-Capacity 5G UPF ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

Programmable ASIC

External DRAM Servers

Key Action State Data Set PDR List Buffer Index

 Key Action State Data Set Buffer Index

Slow Table

Fast Table

Fast Table Handler

Slow Table HandlerLookup
Response ?

Buffer

Lookup Request /

State Data Write back

Packet Buffering

Packet
Arrival

PDRs

Idle UE's
Packet

Packet Out
State Data handler

Metering
...

Counting

Figure 6: X-Plane system overview

external DRAM architecture, this buffer can only be imple-
mented on the external DRAM. When the UE reconnects to
the network, the UPF may simultaneously forward two types
of packets to the UE: buffered packets (pkt_1, pkt_2, pkt_3)
that were stored during the disconnection, and newly arrived
packets (pkt_4, pkt_5, pkt_6) that are forwarded based on
the lookup table in Figure 5. This interleaving of buffered
packets with newly arrived packets at the ingress port of the
programmable ASIC causes packet disordering.
One simple solution to this problem is connecting the

output of the lookup table with the input of the buffer. This
eliminates the out-of-order packets at the ingress port of the
programmable ASICs. However, we face the following two
issues when directly adopting this solution.

First, we need to find a consistent and coherent solution to
update the pointers that mark the head and tail of the buffer.
The update of the two pointers faces similar consistency
issues described in section 3.1. Second, we need to design
a mechanism that automatically releases all packets in the
buffer. The pipeline in the programmable ASIC is driven by
the arrival of ingress packets. When an ordinary data packet
arrives, it passes through the pipeline and triggers operations
designed for releasing buffered packets. However, when the
UE re-connects to the network, the UPF might not receive
new arrival packets. Therefore, even though knowing the
UE’s re-connection, due to the lack of packets at the ingress
port, the programmable ASIC itself does not have a way to
trigger the release of buffered data.

4 SYSTEM OVERVIEW

Figure 6 shows an overview of X-Plane which has the fol-
lowing three modules.
• Concurrent state access: X-Plane supports concurrent
and consistent access (read and write) of UPF state data
on the remote memory pool. This is done by combining a
local state table on the programmable ASIC and a collapsed
write back protocol. This module ensures the correctness

Programmable

ASIC

DRAM

t1 s1t2 s2t3 s3t4 s4t5 s5 t6 s6

LBC
in-flight pkt

−
1

−
2

200
2

200
3

400
3

200
1

400
2

700
2

1100
1

1600
0

bytes = 100 bytes = 1600

Read Req Read Rsp Write Req Write Rsp

Figure 7: Local state table and collapsed writeback.

of state data on the remote memory, compared to the case
of inconsistent state data if directly adopting TEA [16].

• Fast table: X-Plane identifies the source of slow table
lookup in a UPF system and addresses this problem by
designing a fast table. Its basic idea is to remember the
action applied to this flow learned during the PDR match-
ing in the slow UE table. By doing this, X-Plane avoids
repeated PDR matching for the same flow, significantly
improves performance and reduces processing latency,
particularly when we need to perform PDR matching for
a large number of PDRs.

• Paging buffer: This module addresses the out-of-order
packets in a UPF. It does so by building a FIFO buffer across
three devices: programmable ASIC, RDMA QP and paging
buffer on DRAM. This cross-device FIFO buffer guaran-
tees the order of packets. It leverages the concurrent state
access mechanism designed in section 5.1 to guarantee
the in-order Read/Write operation on packets. X-Plane
also designs a mechanism to generate internal signals to
automatically deplete all the buffered data, which is not
possible in previous systems like TEA.

5 DESIGN

5.1 Concurrent State Data Access

To enforce state consistency during concurrent access, we
maintain a Local State Table (LST) in the on-device memory
of the programmable ASIC and perform collapsed writeback.
The state of a flow is updated locally during the processing
of packets that can potentially cause state inconsistency, and
written back to the external memory only when all such
packets have been processed.

More precisely, we divide a flow into busy periods, where
a busy period is a consecutive period during which the flow
has at least one in-flight packet, i.e., a packet whose read
response has not yet come back to the programmable ASIC.
When a new busy period starts, an entry is created for the
corresponding flow in the LST, and the flow state is loaded
from the external memory. The LST uses a local counter to
keep track of the number of in-flight packets in the busy
period. All subsequent state updates in the same busy period
are performed on the LST. When the busy period ends, the
flow state is then written back to the external memory.

5

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Yunzhuo Liu et al.

1
1st Pkt

Slow Table Lookup

Fast Table Generation3

 Key Action State Data Rules List Buffer
Slow Table(UE Table)

 Fast Table(Flow Table)
Key Action State Data Set Buffer Index

Find the matched PDR

2nd and the following Pkts

PDRs Block 1 PDRs Block 2 PDRs Block 3 PDRs Block N

2 PDRs Search High priority Low priority

Figure 8: Fast flow table generation.

We illustrate this process with an example in Figure 7,
where the state is taken to be the cumulative flow byte count.
Suppose six consecutive packets of a flow arrive at time
t1, . . . , t6, with byte sizes 100, 200, 300, 400, 500, 600, respec-
tively. Suppose there is no in-flight packet at time t1. Then the
first five packets form one busy period, while the sixth packet
belongs to the next busy period. At time t1, X-Plane creates
an entry for the corresponding flow in the LST, and initial-
izes the in-flight-packet counter to zero. The in-flight-packet
counter is incremented by one every time X-Plane sends a
read request, and decremented by one whenever a read re-
sponse comes back. When the first read response comes back
at time s1, X-Plane initializes the local byte counter (LBC) in
the LST to the byte count in the read response, which is 100
bytes in this example, and then increments it by the size of
the first packet (100 bytes), so the LBC value is 200. When
the second read response comes back at time s2, X-Plane
discards the stale byte count in the response, and increments
the LBC by the size of the second packet (200 bytes), so the
LBC value is now 400. The LBC is incremented in a similar
way upon the next three read response arrivals. Now at time
s5, the busy period ends, and X-Plane sends a write request
to the external memory, where the cumulative byte count of
the flow is updated to the current LBC value, which is 1600
in this case. When the write response comes back, the LST
entry for this flow will be removed if there is no in-flight
packet; otherwise, it will be retained to serve the next busy
period, which is the case in Figure 7. Since RDMA preserves
packet order, the read request for the sixth packet is guar-
anteed to return the correct byte count at time s6, which is
consistent with the LBC value at the end of the previous busy
period. Note that on the programmable ASIC, the accesses
of different packets to local data are atomic. Therefore, the
atomicity of the operations on LST is guaranteed.

Nowwe give a rough estimate of the storage needed for the
LST. Note that at any time t , a flow has an entry in the LST if
and only if it has at least one packet arrival within a window
of length 2×RTT before t (see Figure 7). Thus the number
of LST entries is upper bounded by the number of packet
arrivals in this window. Suppose the throughput 1.6 Tbps,
the RTT is 5 us, and the average packet size is 690 bytes

[9, 29]. Then the number of LST entries is upper bounded by
1.6Tbps × 5us/690B ≈ 1450. Each entry requires 13 bytes of
memory for the 5-tuple flow identifier, 4 bytes for the LBC
and 4 bytes for the in-flight-packet counter, so the amount of
memory for the entire LST is 1450× (13B+ 4B+ 4B) ≈ 31KB.
As detailed in Section 6, we will implement the LST by a hash
table. To minimize collision, we will allocate much more than
31 KB of memory, but it is still within the capacity of the
on-device memory, which is typically tens of megabytes.

5.2 Generating Fast Flow Table

Fast flow table speeds up the lookup by recording the foot-
prints created by the first packet of each flow. Figure 8 illus-
trates how the table is generated.

1○ Upon the arrival of the first packet of a flow at the
UPF, X-Plane initiates a search in the UE table to locate a
matching entry. For uplink packets, the match keys include
TEID, UE source IP and QoS flow identifier. For downlink
packets, the match key is the UE destination IP. Once a match
is found, it examines all the PDRs in the entry to identify the
matched PDR.

2○ After matching the PDR in the UE table, X-Plane
records the corresponding action as footprints, which are
then used to create an exact-match entry in the flow table.
The entry comprises a 5-tuple match key (source IP, destina-
tion IP, source port, destination port and protocol number),
the actions to be applied to the packet, flow state data, and
buffer information.

3○ From the second packet of a flow onwards, the ingress
packets do not undergo the UE table and PDR matching
process. Instead, the UPF matches the 5-tuple of the ingress
packet to an entry in the flow table to identify the corre-
sponding action.

In practice, when a UE initiates a session, the 5G core con-
trol plane sends PFCPmessages to UPF to configure the PDRs
associated with the session. The UPF-C of X-Plane runs on
the DRAM server, it receives and parses PFCP messages, and
then generates and inserts PDRs into the slow table through
RDMA. Upon receiving a PFCP session modification/deletion
message, the UPF-C will modify/delete the rules in the slow
table and delete the corresponding stale rules in the fast table.
As most of the PDRs remain static during the lifetime of a
UE session, such operations have relatively low frequency
and will not cause high CPU consumption.

PDR Block: Due to the limited Packet Header Vector (PHV)
resource of a programmable ASIC, such as Tofino, which
only has about 160 bytes of PHV for header parsing, loading
all PDRs of a UE table entry for matching is not feasible. To
tackle this issue, X-Plane divides all the PDRs in a UE table
entry into several PDR blocks, as shown in the green block
of Figure 8. Each block contains a small number of PDRs that

6

X-Plane: A High-Throughput Large-Capacity 5G UPF ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

 External DRAM
Servers

 Table

Ingress Packet

Egress Packet

UE

Internet

Packet Bufferd
Before Reconnected p_inp_out

... 1 2 3 ... 4 ...

Buffer

Programmable ASIC

Rule pointers
Rule

RDMA request

Figure 9: In-order packet buffer.

can fit into the PHV. In our implementation, each PDR has
a size of 28 bytes, and each PDR block contains five PDRs,
which can fit into the 160 bytes space of the PHV. Note that
the PDR size is configurable according to needs and it affects
the maximum number of PDRs that can be fetched in a block.
If a matched PDR is not found in the previous block, X-Plane
loads the following block and continue this process until one
matched PDR is found.
One thing to note is that X-Plane also stores the fast

table in external DRAM and generates the fast table rules
from within the data plane, rather than relying on the UPF-
C to generate and insert fast table rules to programmable
ASIC via the ASIC control API. X-Plane chooses this ap-
proach because the frequency of creating or updating flows
is very high. We conduct an empirical measurement and find
that we observe more than 1M new flows per second on a
1 Tbps traffic. This is way beyond the slow entry insertion
speed (∼ 100K per second) via the control API of today’s
programmable ASIC.

5.3 Addressing Out-of-Order Packets

As described in Section 3.3, to keep packets in order, we
connect the output of the lookup table to the input of the
buffer. The connecting is implemented with an extra RDMA
request, as the red line illustrated in Figure 9. It means that
until the corresponding buffer of a UE is completely released,
its newly arrived packet will go through the buffer after the
table lookup process. In this way, packets buffered during
UE disconnection and newly arrival packets when the UE
reconnects to networks will pass the same path, and thus
X-Plane guarantees the order of packets.

As described in Section 3.3, to keep packets in order, we
need to address two challenges: paging buffer state update
and paging buffer release without external triggers. The pag-
ing buffer state is stored in external DRAM and includes a
head pointer (p_out) and a tail pointer (p_in) of the buffer
queue, as shown in Figure 9. The head/tail pointer is up-
dated when releasing/storing packets from/to the buffer, and
they are also read and compared to determine if the queue

Step 0

Trigger Packet From
5G Core Control PlaneProgrammable ASIC RNIC/DRAM

Step i+1 Resp

...
READ

 READ Resp

Step i

READ

addr 0

READ

Resp

RDMA READ

...

addr 1
Data 0

addr i
Data i-1

addr i+1
Data i

...

Figure 10: Buffer packets read loop.

is empty when releasing or storing packets. As packet re-
leasing and storing can happen simultaneously, the pointers
can be accessed in parallel and suffer data in-consistency
issue as explained by Figure 3. X-Plane uses the technology
described in Section 5.1 to manage the pointers.

Instead of relying on external events, such as the arrival of
ingress packets, X-Plane exploits internal events to trigger
the release of the paging buffer. We utilize the response of
an RDMA read to construct another request for releasing the
next buffered packet. This process is described in Figure 10.
When storing a packet, X-Plane adds the address of the
next packet buffer to it. After the programmable ASIC sends
an RDMA read and fetches a buffered packet, it parses the
address and generates another RDMA read for releasing the
next packet. Packets that pass through the buffer after re-
connection may experience extra latency. In the worst case,
they have to wait until all packets in the buffer are released.
We will evaluate the latency in Section 7.7.

Another way to circumvent the two challenges is to use
DRAM server CPU for buffer releasing. Such design can
cause high CPU consumption when the paging ratio is high.
Releasing buffer using ASIC allows us to reserve the CPUs
for complicated UPF functionalities that cannot be offloaded
(discussed in Section 8).

5.4 Putting Everything Together

Figure 11 shows X-Plane’s workflow after we put everything
together. We use the first and sequential packets of a flow to
show how X-Plane works.

Slow Table Lookup (1○- 4○). When the first packet of a
flow from a UE arrives, X-Plane checks whether the 5-tuple
of the packet exists in the flow table. Since it is the first
packet of the flow, no matched entry is found in the flow
table. Therefore, X-Plane turns back to the UE table, finds the
matched entry and parses the PDRs in the entry to determine
the action to be applied to the packet. Then, X-Plane writes
the 5-tuple and action information into an entry in the flow
table.

7

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Yunzhuo Liu et al.

Programmable ASIC

Update

Fast Table Handler

External DRAM Servers

Local
State Table

Fast Table GeneratorSlow Table Handler

Slow
table

lookup

CPU UPF-C

Buffer Packets Read Loop

Buffer

Access buffer
pointer

Busy period end, state data write back

Table Entry (key, action, state data)

Fast
table

lookup

Miss

UE idle
Hit

Packet arrival
Counting Metering

Packet outState Data Handler

Notification for
buffer release

Insert
entry2 3 4

10

1112

8

9

7

6

51

Figure 11: X-Plane’s workflow.

Fast Table Lookup (1○- 2○).When subsequent packets from
the same flow arrive, since all of these packets have the same
5-tuple, X-Plane can find the matched entry in the flow
table and therefore determine the actions to be taken on
these packets based on the flow table information. Once the
action is identified, X-Plane directly processes the packet
without involving the slow UE table.

Counting and metering (5○- 7○). After processing each
packet, X-Plane updates the counters and meters and en-
forces the according forwarding policy. The update is carried
out via the concurrent state data access protocol described
in Section 5.1. In situations where there is a high influx of
packets, X-Plane retains and updates the local state data
on the programmable ASIC. Once the flow’s peak traffic has
been handled, the corresponding entry in the flow table is
updated with the local state data.

Idle UE (8○) and Buffered data release (9○- 12○). X-Plane
leverages a small SRAM space to keep track of the UE’s idle
state. If a UE is idle, the downlink traffic (Internet-to-UE) is
buffered to the external DRAM server. Upon reconnection, X-
Plane utilizes the Buffer Packet Read Loop module triggered
by a notification packet from Control Plane, as described in
Section 5.3, to deliver the buffered packets along with any
newly arrived packets to the UE.

6 IMPLEMENTATION

X-Plane consists of ∼5,000 lines of P4 code. We compile it
to Intel Tofino based Semptian PS7350 programmable switch
with P4 Studio 9.7.1. Our DRAM server runs an open-source
RDMA agent [27] to set up connections with the ASIC switch
and manage the table memory.

Local state table.As a P4 program cannot modify the tables
on the data plane of the programmable ASIC at runtime, we
implement the local state table with registers. Each column
of the local state table, e.g., a key, state data or the in-flight
number, is mapped to a register array. Each packet is matched
with the registers using Tofino CRC hash and their keys are
checked for collision using P4 conditional statements.
PDR lookup. In our PDR list, several PDRs are stored to-
gether in one entry and fetched by the programmable ASIC in
one RDMA read. The programmable ASIC parses the PDRs
as packet headers, and uses P4 conditional statements to
match the keys. Limited by the ASIC PHV resources that are
consumed to parse the header, we configure the number of
PDRs in one entry to a maximum value of 5. We allocate 8
PDR entries for each UE, supporting a maximum of 40 PDRs.
Hash collision resolution and table size. Each entry in
our UE/PDR and flow tables is allocated 2KB of memory.
With a total number of 1M slow table entries, 8M PDR en-
tries and 10M flow table entries, 38GB DRAM is required.
To further reduce the hash collision rate, we allocate extra
space for each table, i.e., 8M slow table entries, 64M PDR
entries and 64M flow table entries, leading to a total of 272GB
DRAM usage. Similarly, we allocate extra space for the LST
tables, leading to a total SRAM usage of about 550KB. We
empirically show that the ratio of hash collided packets in
X-Plane is about 0.9%. When a collision happens, we redi-
rect the packet to be processed by CPU on one of the DRAM
servers. We show in our later experiments that CPU achieves
a low latency within 20us when handling such small amount
of traffic, and only a small extra CPU utilization is incurred.

7 EVALUATION

7.1 Setup and baseline

Testbed setup. Our testbed includes an Semptian PS7350
programmable switch with an Intel Tofino ASIC chip, two
servers with Intel XEON 4314 CPUs (16 Cores) x2, and a
server with Intel XEON 8380 CPUs (40 Cores) x2. All servers
run CentOS 7.9 with a kernel version of 3.10.0, and we use
the server with the 8380 CPUs as traffic generator and the
other two as DRAM servers. The traffic generator has eight
100Gbps Mellanox CX-6 RDMA NIC and runs Trex 3.00 [5]
based on DPDK 20.11 [10]. Each of the DRAM servers has
four 100Gbps Mellanox CX-6 RDMA NIC and 16 × 32GB
RAM. All servers are directly connected to the programmable
switch. Note that X-Plane does not necessarily require two
DRAM servers, the testbed is limited by the hardware we
have at hand and we will further discuss the DRAM server
requirements in Section 8.
Traffic workloads. We use synthetic traffic that contains
10 million flows from 1 million UEs. The UEs are generated

8

X-Plane: A High-Throughput Large-Capacity 5G UPF ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

System Counting Metering Packet
Buffering

⋆Per Pipeline
Flow Capacity

Per Pipeline
Throughput

Fast-path
Latency

Slow-path
Latency

⋄Fast-path
Ratio

CPU
Usage Type

HybridUPF [18] × × × 15M 10-100Gb/s ∼1.3us ∼350us ∼40% Medium Academic

Kundel et al. [19] × × × N/A 100Gb/s <1us N/A N/A High Academic

Zhou et al. [33] × × × 1K 100Gb/s <1us ∼100us N/A High Academic

Kaloom [14] N/A N/A N/A 1M (4M) 375Gb/s (1.5Tb/s) <1us N/A N/A N/A Commercial

P4UPF [20] ✓ × ✓ ∼117K N/A N/A N/A N/A High Academic

△
ZTE-UPF (56 cores) [9] ✓ ✓ ✓ N/A 177Gb/s N/A ∼150us N/A High Commercial

△
ZTE-UPF (80 cores) [9] ✓ ✓ ✓ N/A 280Gb/s N/A ∼150us N/A High Commercial

X-Plane ✓ ✓ ✓ 10M 490Gb/s ∼3.1us ∼12us ∼95% Low Academic

Table 1: Performance comparison of programmable ASIC-based UPF.
⋆
Kaloom uses two Tofino switches and

contains at least 4 pipelines. We also report its total flow capacity and throughput in parentheses.
⋄
Both the

reported fast-path ratios are traffic-dependent, and they are both based on the same CAIDA trace [4]. Fast-path

ratio of HybridUPF is a rough estimation from its performance data.
△
ZTE-UPF is a pure CPU-based UPF.

10 20 40
Number of PDRs searched

0
100
200
300
400
500

Th
ro

ug
hp

ut
 (G

bp
s)

U (0%) E (4.8%) H (25%)

(a) Common 5G UPF test packet size
(64-1518 bytes, an average of 690).

10 20 40
Number of PDRs searched

0
100
200
300
400
500

Th
ro

ug
hp

ut
 (G

bp
s)

U (0%) E (4.8%) H (25%)

(b) 64-byte small packets.

10 20 40
Number of PDRs searched

0
100
200
300
400
500

Th
ro

ug
hp

ut
 (G

bp
s)

U (0%) E (4.8%) H (25%)

(c) 128-byte small packets.

10 20 40
Number of PDRs searched

0
100
200
300
400
500

Th
ro

ug
hp

ut
 (G

bp
s)

U (0%) E (4.8%) H (25%)

(d) 256-byte small packets.

Figure 12: X-Plane’s throughput with packets of different size

using 1 million random IPs. The UE IPs are used as the flow
destination IPs to generate downstream traffic. We extend
each UE IP to 10 IPv4 5-tuples by randomly selecting the flow
source IP, source port and destination port from 1000 IPs and
ports. The slow path packet ratio is an important factor that
affects our system performance as it determines the amount
of traffic that goes through the slow table path. We use a
ratio of 4.8% obtained from the CAIDA [4] dataset. CAIDA is
a widely used network traffic dataset that is collected from
the backbone of the Internet. As the details of CAIDA trace
are not publicly available, we use the revealed statistics from
2013 to 2019 and calculate the slow path ratio by dividing the
average number of flows per second by the average number
of packets per second. Note that such calculation is in fact
an overestimation because flows in each second are usually
not all new. We mark the packets with a probability of the
slow path packet ratio, and our P4 program will direct the
marked packets to the slow table path. We use a commonly
adopted 5G UPF test traffic model [29] for packet size, which
varies from 64 to 1518 bytes with an average of 690 bytes.

Baselines.We compare X-Planewith existing programmable
ASIC-based UPF systems. We choose those proposed in ex-
isting work [6, 18–20, 33] that are either capable of reaching
a throughput of 100Gb/s [18, 19, 33] or support UPF key
features like counting or metering [20]. We also include a
commercial UPF system, Kaloom[14]. As far as we know,
these systems are all implemented with Intel Tofino. We re-
port the per ASIC pipeline throughput of each system. Note
that Kaloom uses two Tofino switches and contains at least 4

pipelines, we also report its total flow capacity and through-
put. As none of the systems are open-sourced, we use the
performance data reported in their papers. Likewise, the per-
formance data of Kaloom is obtained from its product white
papers. As far as we know, all the reported performance data
are generated using similar settings as our evaluation, e.g.,
packet size distribution and the number of searched PDRs
(< 10), and they represent the best-case performance of each
system. Thus those reported data are eligible for the use of
performance comparison with our system.

7.2 Overall Performance

Table 1 compares X-Plane with the baselines. Note that
fast-path in baseline systems refers to processing traffic on
programmable ASIC and slow-path refers to processing traf-
fic on their CPUs. For X-Plane, fast-path refers to flow table
path while slow path refers to UE table path, and in both
paths the traffic is processed on programmable ASIC. We
report the latency of the fast-path and slow-path respectively.
From the table we make the following observations.

First, X-Plane supports all three key UPF features, includ-
ing counting, metering, and packet buffering, while achiev-
ing the highest per pipeline throughput among all systems.
The flow capacity of X-Plane is comparable to the highest
15M of HybridUPF [18], which however, is achieved without
supporting the key UPF features. Kaloom achieves the closest
per pipeline throughput (23% lower) to that of X-Plane, how-
ever, the flow capacity of X-Plane is 10X larger. As the tables
of X-Plane are stored in external DRAM without relying on

9

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Yunzhuo Liu et al.

102101
0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
D

F

99.0%

pdr-10
pdr-20
pdr-40

Latency (us)
(a) U (0%).

100 102101 0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
D

F

99.0%

pdr-10
pdr-20
pdr-40

Latency (us)
(b) E (4.8%).

0.0
0.2
0.4
0.6
0.8
1.0
1.2

99.0%

pdr-10
pdr-20
pdr-40

C
D

F

 Latency (us)
102101

(c) H (25%)

101 102

Latency (us)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
D

F

99.0%

pdr-10
pdr-20
pdr-40

(d) Hash collided packets (< 5Gb/s)
Figure 13: Latency distribution.

U
 (0

%
)

E
(4

.8
%

)

H
 (2

5%
)

U
 (0

%
)

E
(4

.8
%

)

H
 (2

5%
)

U
 (0

%
)

E
(4

.8
%

)

H
 (2

5%
)

0

10

20

O
ve

ra
ll

la
te

nc
y

(u
s)

On-switch processing Table lookup

pdr-10 pdr-20 pdr-40

Figure 14: Latency breakdown. Note that the large er-

ror bars of U (0%) and E (4.8%) aremainly caused by the

difference in fast-path and slow-path latency.

the local memory of the ASIC, we can further increase its
flow capacity by adding more DRAM to the external server.
Second, X-Plane achieves a fast-path latency of 3.1 us,

a slow-path latency of 12 us and an average latency of 3.6
us. In general, the fast-path latency is at a comparable level
with those of other systems. It is about averagely 2 − 3 us
higher due to the RDMA round trip to external DRAM. As
the slow-path traffic of existing systems is processed on CPU,
an latency of hundreds of microseconds is usually inevitable,
e.g., about 350us for HybridUPF. In contrast, the slow path
of X-Plane remains on hardware, leading to low slow-path
latency. It shows that X-Plane further exploits the benefits
of hardware processing compared with existing systems.
Third, X-Plane achieves the highest fast-path ratio. Ex-

isting hardware UPF systems redirect packets to CPU for
processing when rule match misses on the hardware. Hy-
bridUPF optimizes the flow rules offloaded to hardware bas-
ing on heavy hitters to maximize fast-path throughput. We
give a rough estimation from its reported performance data
that about 40% of its traffic is processed on hardware. By
comparison, X-Plane achieves a fast-path ratio of about 95%.

Finally, X-Plane achieves the lowest CPU usage. Note that
we only give a rough judgment of the usage as low, medium
and high. The low consumption of X-Plane is attributed
to that its slow path is maintained on hardware and thus
significantly reduces the CPU overhead. The optimized flow
rule offload policy of HybridUPF increases its fast-path traffic
compared with Zhou et al., Kundel et al. and P4UPF, thus
lowering its CPU consumption. Note that we also include a

pure CPU-based UPF in the table, i.e., ZTE-UPF. X-Plane out-
performs ZTE-UPF in both throughput and latency. However,
this is not really a fair comparison as first, the two systems
differ hugely in the required CPU cores (for X-Plane, the to-
tal 64 cores of the DRAM servers are not necessary). Second,
ZTE-UPF supports more complicated UPF functionalities like
Deep Packet Inspection (DPI), putting it at a disadvantage
when comparing throughput and latency. We will further
discuss the support for more complicated UPF functionalities
and CPU resource consumption in Section 8.

7.3 In-depth Performance Analysis

Throughput. We evaluate how the throughput of X-Plane
is affected by three factors, including: (1) the slow path packet
ratio, (2) the number of searched PDRs and (3) the average
packet size. Besides the 4.8% slow path packet ratio that we
obtained Empirically from the CAIDA trace, labeled as "E
(4.8%)", we also include two other settings. One is an ideal
0% slow path packet ratio that represents the performance
Upper bound of X-Plane, labeled as "U (0%)". The other one
is an example of ultra High slow path ratio, labeled as "H
(25%)". Though such worse case is unlikely to happen in
real deployments, it helps us understand the lower bound of
our system’s performance. We vary the number of searched
PDRs from 10 to 40, and use packet sizes of 64, 128 and 256
bytes to evaluate the system throughput with small packets.
Results in Figure 12(a) show that the best performance

of our system reaches a throughput of 490Gb/s (E (4.8%),
PDR=10). Although the incoming ports provide a total band-
width of 800Gb/s, 490Gb/s incoming traffic saturates the
800Gb/s links from the switch to backend DRAM servers.
Such overhead is mainly caused by (1) RDMA overhead, in-
cluding the RDMA header added to each packet to write/read
to/from external DRAM to perform table lookup, and the
additional RDMA requests to write back state data. (2) Slow
path overhead, as a packet processed on the slow path can
incur several rounds of write/read to/from external DRAM.

More rounds of PDR searching decrease the system through-
put. Such degradation is more obvious with H (25%), as the
PDR searching affects only the cost on the slow path. It
is relatively milder with E (4.8%), where we observe a 23%
throughput decrease as the PDR number increases from 10

10

X-Plane: A High-Throughput Large-Capacity 5G UPF ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

to 40. However, even with H (25%) and a PDR number of 40,
X-Plane achieves a throughput put of 162Gb/s, still outper-
forming all academic hardware UPF systems in Table. 1.

Figure 12(b)-12(d) show that X-Plane achieves a through-
put of 78Gb/s, 146Gb/s and 242Gb/s respectively (E (4.8%),
PDR=10) with smaller packets. When the packet size is 64
bytes, themaximum throughput in terms ofMpps is achieved,
i.e., 156Mpps. Such throughput is limited by the RDMA read
throughput of the CX6NICs onDRAM servers. In our system,
a 100Gb NIC port can achieve a maximum of near 40Mpps
RDMA read throughput while 120Mpps for RDMA write
when communicating with the ASIC switch. The RDMA read
throughput is about 30% lower compared with the through-
put between two CX6 NICs. Further improving the RDMA
read performance between ASIC switch and DRAM server
is expected to increase the overall performance of X-Plane.

Latency. Figure 14 shows the average latency of X-Plane.
For U (0%), the average latency is about 3 us. We break down
the latency as the on-switch processing time and the table
lookup time. On-switching time refers to the time spent on
ASIC switch to perform operations such as RDMA protocol
stack processing, hash calculation and PDR match. Table
lookup is the time spent on accessing data from the external
DRAM. The results show that the table lookup time consti-
tutes more than 83% of the total latency on average. This is
because an RDMA round trip to external DRAM can take up
to several microseconds, while traversing the pipeline in an
AISC switch typically takes less than 1 microsecond.

Figure 13 demonstrates the distribution of the latency.
Figure 13(a) shows that the distribution of U (0%) stays un-
changed with different numbers of searched PDRs. Because
no PDR lookup happens when the slow path packet ratio is
zero. Over 99% of the latency of U (0%) are within 5us. For E
(4.8%) in Figure 13(b), the 1% tail latency is determined by the
slow path latency. As the PDR number increases from 10 to
40, over 99% of the latency remains under 20us, such latency
is much lower than the hundred microsecond-level slow path
latency in baseline systems, making it possible to satisfy the
ultra-low 5G latency requirement, i.e., 1ms latency.
In addition, we demonstrate the latency of hash collided

packets in Figure 13(d). As mentioned before, the collided
packets are redirected to be processed by CPU on DRAM
server. We show that these packets constitute less than 1%
of the total traffic, i.e., < 5Gb/s. Although software UPF typi-
cally suffers latency up to hundreds of microseconds when
running at normal traffic load, it achieves an average latency
within 20us when handling such low load of traffic.

ASIC resource consumption. We obtain the resource
consumption from the P4 compiler’s output. As shown in
Table 2, X-Plane consumes less than 30% of the available re-
sources for the majority of resource types, including TCAM,
SRAM, Hash Bits, VLIW and Match Crossbar. The TCAM

ASIC Resource Usage (%) Server Resource Usage

TCAM 0 DRAM 264 GB

SRAM 5.94 CPU utilization ≈ 6.3%

Hash Bits 15.97 Memory Bandwidth 30%

VLIW 16.93

Match Crossbar 20.38

Gateway 51.56

Table 2: Programmable ASIC and DRAM server re-

source consumption.

10 20 40
Number of PDRs searched

0

10

20

30

M
ill

io
n

in
se

rti
on

s/
se

c

Figure 15: Flow table rule generation speed. X-Plane

achieves millions of flow rule insertions per second.

consumption is zero as X-Plane does not rely on the ternary
match capability of the switch. X-Plane utilizes the SRAM
mostly for storing RDMA-related information like QP in-
dex, and for implementing the local state table. The total
SRAM consumption is only 5.94%, and there remains enough
space to implement other functionalities or optimization
techniques like hot/hierarchical tables.

DRAM server resource consumption. We report the
server resource consumption in Table. 2. The total DRAM us-
age of a server is 264GB, including 136GB for implementing
UE and flow table, and 128GB reserved for idle UE packet
buffer. Two CPU cores are used to handle the hash collided
packets and incur an average of 6.3% CPU utilization. The
RDMA server procedure only incurs a short period of 6%
CPU utilization during startup for setting up connections
and initializing tables. The total memory bandwidth con-
sumption is 30%. In general, X-Plane incurs a low CPU and
memory bandwidth consumption on the DRAM servers.

7.4 Resource Consumption

7.5 Flow Table Generation Speed

Next we evaluate the maximum speed of X-Plane to trans-
late the PDR rules into flow rules and insert them into the
fast flow table. The maximum speed is obtained by setting
the slow path ratio to 100%. Results in Figure 15 show that
X-Plane achieves an insertion rate of 29.7 million insertions
per second when the number of searched PDRs is 10. As
a flow rule can only be generated after a PDR is matched
on the slow path, the insertion rate is limited by the slow
path throughput. Thus we see that insertion rate decreases
as the PDR number increases, and achieves 17.3 and 11.2
million insertions per second respectively with 20 and 40

11

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Yunzhuo Liu et al.

10 20 40
Number of PDRs searched

0.0

0.5

1.0

N
or

m
al

iz
ed

 th
ro

ug
hp

ut U (0%) E (4.8%) H (25%)

(a) Effect on throughput. Throughput degradation is within
2% compared to when concurrency control is not applied.

10 20 40
Number of PDRs searched

0.0

0.5

1.0

N
or

m
al

iz
ed

 la
te

nc
y U (0%) E (4.8%) H (25%)

(b) Effect on latency. Latency increase is within 12% com-
pared to when concurrency control is not applied.
Figure 16: Concurrency control overhead.

PDRs. Basing on the analysis in existing work [26], flow
rule insertions per second grows approximately by 4K per
Gb/s of internet traffic. Thus about 2M insertions per second
is required for 500Gb/s of traffic. The generation speed of
X-Plane is sufficient to meet such requirement.

7.6 Concurrency Control Overhead

To evaluate the effect of our LST-based concurrency control
mechanism on the performance of X-Plane, we normalize
the system latency and throughput to those when the con-
currency mechanism is removed. As shown in Figure 16, the
throughput degradation is within 2%, and the latency in-
crease is within 12%. Such results suggest that our LST-based
concurrency control mechanism design can be implemented
with only a small overhead. This can be explained as that
the mechanism only incurs several extra hash calculations
and register access for each packet processing on the ASIC
switch, which does not significantly increase the consump-
tion of ASIC clock cycles.

7.7 In-order Buffering Latency Overhead

Our FIFO buffer ensures the in-order release of buffered
packets. We evaluate the extra latency of buffer design, by
increasing the number of packets in the buffer from 2 to a
maximum value of 128. Results in Figure 17 show that the
extra latency increases linearly, from 10 us to a maximum
value of 640 us. The linearity is due to that the buffered
packets are released in a serial fashion and each release
incurs a latency about 4-5 us.

2816 32 64 96 128
Number of buffered packets

0

200

400

600

Ex
tra

 la
te

nc
y

(u
s)

Figure 17: Extra latency for subsequent packets The

extra latency increases linearly with the number of

packets in the buffer.

7.8 Case Study: Rate Limiting

We show an example of implementing a UPF functionality
on X-Plane. We apply rate limiting policies to three UEs.
The bucket tokens used for rate limiting are stored in ex-
ternal DRAM and accessed from the ASIC switch using our
concurrency control mechanism to ensure the correctness of
the data. As shown in Figure 18, packets of three UEs arrive
at time 0, and are forwarded with a data rate of 1Gb/s. Then
around time 12 and 20, the mobile data usage of UE-0 and
UE-1 reaches a predefined quota and the data rates of the two
UEs are limited to a lower level, i.e., 256Mb/s and 512Mb/s
respectively. The average throughput error is within 1%.

8 DISCUSSION

Offloadingmore complicatedUPF functionalities.Note
that X-Plane does not guarantee that all UPF functionali-
ties can be offloaded to programmable ASIC, for example,
Deep Packet Inspection (DPI) can have a long logic chain
that exceeds the stage limit of ASIC pipeline, and it is chal-
lenging for the ASIC to perform scheduling that requires
global UE/flow information. To support these functionalities,
we can resort to CPUs on the DRAM servers. We envision
that we can combine X-Plane and CPU-based UPF to get
the best of both worlds by offloading all basic (and required)
functionalities to X-Plane while keeping more complicated
(and optional) functionalities to CPU.

DRAM server requirements. The current implementation
of X-Plane only requires the DRAM server to provide (1)
800Gb/s RDMA and memory bandwidth and (2) a small
amount of CPU cores (<4), which can be easily satisfied by
a single off-the-shelf server. Combining X-Plane and CPU-
based UPF to support more complicated UPF functionalities
can increase the required number of cores on the DRAM
server.We expect that such combination requiresmuch fewer
CPU cores to outperform a pure CPU-based UPF, but further
investigation is needed to determine the required number of
CPU cores and the level of improvement.

9 RELATEDWORK

Other hardware offloadUPF systems.Anothermajor cat-
egory of hardware UPF is smartNIC-based UPF systems [3, 12,

12

X-Plane: A High-Throughput Large-Capacity 5G UPF ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

0 5 10 15 20 25 30 35 40
Time (s)

0
200
400
600
800

1000
1200

Th
ro

ug
hp

ut
 (M

b/
s)

UE-0 UE-1 UE-2

Figure 18: An UPF functionality example: rate limit-

ing. The data rates of three UEs are eventually limited

to 256Mb/s, 512Mb/s and 1Gb/s respectively.

18, 21, 22]. By comparison, smartNIC provides larger mem-
ory, typically several Gbs, and better programmability that
can simplify the design of UPF. For example, Synergy [22]
directly buffers/releases packets on/from smartNIC using
on-chip CPU cores and can achieve low buffer releasing la-
tency than X-Plane, i.e., < 10us. However, the memory of
smartNIC is still not enough to provide buffer for all idle UEs.
Based on our communication with service providers, the
idle UE ratio is usually larger than 40% and a packet buffer
of about 100KB is provided for each idle UE. Assuming 1M
UEs, 300Gb memory is required, which exceeds the capac-
ity of a smartNIC. Although we can stack many smartNICs
together to increase the memory size, it causes a waste of
computation and bandwidth resources on the smartNICs. In
contrast, ASIC with external DRAM enables X-Plane to flex-
ibly extend its memory capacity. Other works [2, 3] propose
to also offload PFCP message parsing to hardware to cope
with the rule insertion speed bottleneck while X-Plane does
not suffer such problem as explained in Section 5.2.

RDMA-based memory extension for ASIC switch. Be-
sides TEA [16] and its early design [17], Ribosome [26] uses
RDMA-based external DRAM to extend ASIC switch mem-
ory. It sends packet headers to network function servers and
only uses the RDMA-based memory for temporally storing
the packet payload before the packet headers finish process-
ing. It utilizes the external memory in a relatively simple
way and does not answer the question that how it can be
utilized to implement functions in 5G UPF.

Other ASIC switch memory extension work. Tiara [32]
uses an FPGA based design to extend ASIC switch memory
for implementing layer-4 load balancing. Its design relies on
the fact that the load balancing rules can be split and only the
connection-to-real server mapping needs to be maintained
on ASIC switch. However, such rule splitting technique is
not applicable to PDRs in 5G UPF.

PDR lookup optimization. L25GC [11] studies the perfor-
mance of different PDR search algorithms and shows that
optimized ones like partition search and tuple space search
effectively reduce search overhead compared with simple
linear search. The PDR search algorithm optimization is

orthogonal to our design and can be further integrated to
reduce the number of searched PDRs and improve the slow
path performance of X-Plane.

Flow cache. The fast table of X-Plane is similar to the idea
of microflow cache in Open vSwitch (OVS) [24] where exact-
match rules corresponding to each connection are generated
as the fast forwarding path. The difference is that X-Plane
stores the fast table in external DRAM and utilizes hardware
programmability to generate the rules directly from within
the data plane for higher rule insertion speed.

ExternalNF state data. Many network virtualizationworks
have proposed to utilize remote storage to store NF state
data [8, 13, 28]. Their concurrency problem happens in a
scenario different from that of X-Plane when multiple of
their nodes access the same state data. The problem can be
solved with a common lock mechanism as the CPU-based
NFs can suspend the packet processing and wait for the re-
lease of locks. CHC [15] ensures data consistency by using
CPU on remote storage servers to operate on the state data.
As state update is incurred by nearly every packet in 5G
UPF, e.g., counter increase, applying such design causes high
CPU consumption and degrades system throughput. The
early work of TEA [16] uses RDMA atomic add operation
to update counters in external DRAM. However, it achieves
limited throughput as RDMA atomic operation has nearly 8X
lower Mpps throughput than that of RDMA write/read [25].
In addition, as RDMA atomic operation does not support
read, it fails when both read and write of the state data are
required, like the read and update of the metering bucket
token. In contrast, X-Plane implements concurrency control
that supports both read and write while incurring near zero
throughput penalty.

10 CONCLUSION

In this paper, we introduce the design, implementation and
evaluation of X-Plane, a UPF that supports 490 Gb/s through-
put, over 10 million flows and less than 4 us latency. X-Plane
is built by combining programmable ASICs and external
DRAM. It invents several novel technologies, such as con-
current state data access, fast flow table and our-of-order
packets handler to enable high performance UPF functions,
such as counting, meter, etc. We believe X-Plane opens op-
portunities to design high performance UPF on the cloud
infrastructure.

ACKNOWLEDGMENTS

This work was in part supported by the National Natural
Science Foundation of China (No. 62072302), Alibaba Inno-
vative Research (No. 2022010307) and National Key Research
and Development Program of China (No. 2020YFB1807803).

13

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Yunzhuo Liu et al.

REFERENCES

[1] aws. 2020. 5g-network-evolution-with-aws. https://d1.awsstatic.com
/whitepapers/5g-network-evolution-with-aws.pdf.

[2] Abhik Bose, Shailendra Kirtikar, Shivaji Chirumamilla, Rinku Shah,
and Mythili Vutukuru. 2022. AccelUPF: Accelerating the 5G User Plane
Using Programmable Hardware. In SOSR ’22. 1–15.

[3] Abhik Bose, Diptyaroop Maji, Prateek Agarwal, Nilesh Unhale, Rinku
Shah, and Mythili Vutukuru. 2021. Leveraging Programmable Data-
planes for a High Performance 5G User Plane Function. In 5th Asia-
Pacific Workshop on Networking (APNet 2021). 57–64.

[4] CAIDA. 2019. Trace Statistics for CAIDA Passive OC48 and OC192
Traces. https://www.caida.org/catalog/datasets/trace_stats/.

[5] Cisco. 2023. TRex Realistic Traffic Generator. https://trex-tgn.cisco.
com.

[6] Zhou Cong, Zhao Baokang, Wang Baosheng, and Yuan Yulei. 2021.
CeUPF: Offloading 5GUser Plane Function to Programmable Hardware
Base on Co-existence Architecture. In Proceedings of the 2021 ACM
International Conference on Intelligent Computing and its Emerging
Applications. 34–39.

[7] ericsson. 2020. ericsson.com-cloud-native. https://www.ericsson.com
/en/cloud-native.

[8] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014.
OpenNF: Enabling innovation in network function control. ACM
SIGCOMM Computer Communication Review 44, 4 (2014), 163–174.

[9] Intel. 2021. ZTE’s High Performance 5G Core Network UPF
Implementation Based on 3rd Generation Intel® Xeon® Scalable
Processors. https://networkbuilders.intel.com/solutionslibrary/zte-s-
high-performance-5g-core-network-upf-implementation-based-on-
3rd-generation-intel-xeon-scalable-processors.

[10] Intel. 2023. Data Plane Development Kit. https://www.dpdk.org.
[11] Vivek Jain, Hao-Tse Chu, Shixiong Qi, Chia-An Lee, Hung-Cheng

Chang, Cheng-Ying Hsieh, KK Ramakrishnan, and Jyh-Cheng Chen.
2022. L25GC: a low latency 5G core network based on high-
performance NFV platforms. In Proceedings of the ACM SIGCOMM
2022 Conference. 143–157.

[12] Vivek Jain, Sourav Panda, Shixiong Qi, and KK Ramakrishnan. 2022.
Evolving to 6G: Improving the Cellular Core to lower control and data
plane latency. In 2022 1st International Conference on 6G Networking
(6GNet). IEEE, 1–8.

[13] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. State-
less Network Functions: Breaking the Tight Coupling of State and
Processing. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). 97–112.

[14] Kaloom. 2020. The Kaloom 5G User Plane Function (UPF).
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Prod
uct-Brief-Kaloom-5G-UPF-v1.0.pdf.

[15] Junaid Khalid and Aditya Akella. 2019. Correctness and performance
for stateful chained network functions. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 501–516.

[16] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun
Lee, Vyas Sekar, and Srinivasan Seshan. 2020. Tea: Enabling state-
intensive network functions on programmable switches. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication. 90–106.

[17] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, and Srini-
vasan Seshan. 2018. Generic external memory for switch data planes.
In Proceedings of the 17th ACM Workshop on Hot Topics in Networks.
1–7.

[18] Suneet Kumar Singh, Christian Esteve Rothenberg, Jonatan Langlet,
Andreas Kassler, Peter Voros, Sandor Laki, and Gergely Pongracz. 2022.
Hybrid P4 Programmable Pipelines for 5G gNodeB and User Plane
Functions. IEEE Transactions on Mobile Computing (2022), 1–18.

[19] Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, and Ralf Stein-
metz. 2022. User Plane Hardware Acceleration in Access Networks:
Experiences in Offloading Network Functions in Real 5G Deployments..
In HICSS. 1–10.

[20] Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Pad-
manabhan, Ajay Thakur, Larry Peterson, Jennifer Rexford, and Oguz
Sunay. 2021. A P4-based 5G User Plane Function. In Proceedings of the
ACM SIGCOMM Symposium on SDN Research (SOSR). 162–168.

[21] Napatech. 2022. 5G User Plane Function (UPF) Offload for Na-
patech Programmable SmartNICs with Link-Inline Software.
https://www.napatech.com/support/resources/data-sheets/5g-user-
plane-function-upf-offload/.

[22] Sourav Panda, K. K. Ramakrishnan, and Laxmi N. Bhuyan. 2022. Syn-
ergy: A SmartNIC Accelerated 5G Dataplane and Monitor for Mobility
Prediction. In 2022 IEEE 30th International Conference on Network Pro-
tocols (ICNP). 1–12.

[23] Tian Pany and et al. 2022. Sailfish: Accelerating Cloud-Scale Multi-
Tenant Multi-Service Gateways with Programmable Switches. In In
ACM SIGCOMM 2021, Conference (SIGCOMM’21). ACM, New York, NY,
USA, 13 pages.

[24] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. 2015. The design and implementation of open vSwitch. In 12th
USENIX symposium on networked systems design and implementation
(NSDI 15). 117–130.

[25] Waleed Reda, Marco Canini, Dejan Kostic, and Simon Peter. 2022.
RDMA is Turing complete, we just did not know it yet!. In Proceedings
of NSDI, Vol. 22.

[26] Mariano Scazzariello, Tommaso Caiazzi, Hamid Ghasemirahni, Tom
Barbette, Dejan Kostic, and Marco Chiesa. 2023. A High-Speed Stateful
Packet Processing Approach for Tbps Programmable Switches. In Pro-
ceedings of the 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22).

[27] Mariano Scazzariello, Tommaso Caiazzi, Hamid Ghasemirahni, Tom
Barbette, Dejan Kostic, and Marco Chiesa. 2023. Ribosome RDMA
Server Agent. https://github.com/Ribosome-Packet-Processor/Riboso
me-RDMA-Server-Agent.

[28] ShinaeWoo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,
and Scott Shenker. 2018. Elastic scaling of stateful network functions.
In 15th {USENIX} Symposium on Networked Systems Design and Im-
plementation ({NSDI} 18). 299–312.

[29] Qiang Wu, Xiangping Bryce Zhai, Xi Liu, Chun-Ming Wu, Fangliang
Lou, and Hongke Zhang. 2022. Performance Tuning via Lean Measure-
ments for Acceleration of Network Functions Virtualization. IEEE/ACM
Transactions on Networking (2022).

[30] X-Plane. 2023. x-plane-5g-upf. https://github.com/AlibabaResearch/x-
plane-5g-upf.

[31] Guoliang Gu Yong Li, Jerry Zhang and et al. 2019. Implementation of
ZTE’s High-Performance 5G Core Network UPF.

[32] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li,
Wenchen Han, Nan Chen, Lebing Wan, Lichao Liu, Zhipeng Ding, et al.
2022. Tiara: A scalable and efficient hardware acceleration architecture
for stateful layer-4 load balancing. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). USENIX
Association, 1345–1358.

[33] Cong Zhou, Baokang Zhao, and Baosheng Wang. 2022. A 100Gbps
User Plane Function Prototype Based on Programmable Switch for 5G
Network. In 6th Asia-Pacific Workshop on Networking (APNet 2022).

14

https://d1.awsstatic.com/whitepapers/5g-network-evolution-with-aws.pdf
https://d1.awsstatic.com/whitepapers/5g-network-evolution-with-aws.pdf
https://www.caida.org/catalog/datasets/trace_stats/
https://trex-tgn.cisco.com
https://trex-tgn.cisco.com
https://www.ericsson.com/en/cloud-native
https://www.ericsson.com/en/cloud-native
https://networkbuilders.intel.com/solutionslibrary/zte-s-high-performance-5g-core-network-upf-implementation-based-on-3rd-generation-intel-xeon-scalable-processors
https://networkbuilders.intel.com/solutionslibrary/zte-s-high-performance-5g-core-network-upf-implementation-based-on-3rd-generation-intel-xeon-scalable-processors
https://networkbuilders.intel.com/solutionslibrary/zte-s-high-performance-5g-core-network-upf-implementation-based-on-3rd-generation-intel-xeon-scalable-processors
https://www.dpdk.org
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-Brief-Kaloom-5G-UPF-v1.0.pdf
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-Brief-Kaloom-5G-UPF-v1.0.pdf
https://www.napatech.com/support/resources/data-sheets/5g-user-plane-function-upf-offload/
https://www.napatech.com/support/resources/data-sheets/5g-user-plane-function-upf-offload/
https://github.com/Ribosome-Packet-Processor/Ribosome-RDMA-Server-Agent
https://github.com/Ribosome-Packet-Processor/Ribosome-RDMA-Server-Agent
https://github.com/AlibabaResearch/x-plane-5g-upf
https://github.com/AlibabaResearch/x-plane-5g-upf

	Abstract
	1 Introduction
	2 Background
	2.1 5G Core User Plane Function (UPF)
	2.2 Existing Programmable ASIC based UPF
	2.3 Programmable ASIC + External DRAM

	3 Challenges
	3.1 Concurrent Access to Stateful Data
	3.2 Slow Table Lookup
	3.3 Out-of-Order Packets

	4 System Overview
	5 Design
	5.1 Concurrent State Data Access
	5.2 Generating Fast Flow Table
	5.3 Addressing Out-of-Order Packets
	5.4 Putting Everything Together

	6 Implementation
	7 Evaluation
	7.1 Setup and baseline
	7.2 Overall Performance
	7.3 In-depth Performance Analysis
	7.4 Resource Consumption
	7.5 Flow Table Generation Speed
	7.6 Concurrency Control Overhead
	7.7 In-order Buffering Latency Overhead
	7.8 Case Study: Rate Limiting

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

