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Abstract

Single Root I/O Virtualization (SR-IOV) technology has ad-
vanced in recent years and can simultaneously satisfy the
network requirements of high data plane performance, high
deployment density and fast startup for applications in tra-
ditional containers. However, it falls short with secure con-
tainers, which have become the mainstream choice in multi-
tenant clouds. The secure containers require passthrough
I/O to enable SR-IOV, which hinders the container startup
performance and prevents its usage in time-sensitive tasks
like serverless computing. In this paper, we advocate that
the startup performance of SR-IOV can be further boosted,
making it suitable for building a container network inter-
face (CNI) for secure containers. We first dissect the end-
to-end concurrent startup process and identify three key
bottlenecks that lead to the slow startup, including Virtual
Function I/O (VFIO) device set management, Direct Memory
Access (DMA) memory mapping and Virtual Function (VF)
driver initialization. We then propose a CNI named FastIOV
that addresses these bottlenecks through lock dissembling,
unnecessary mapping skipping, decoupled zeroing, and asyn-
chronous VF driver initialization. Our evaluation shows that
FastIOV reduces the overhead of enabling SR-IOV in secure
containers by 96.1%, achieving 65.7% and 75.4% reductions
in the average and 99th percentile end-to-end startup time.

1 Introduction

Nowadays, mainstream cloud providers have been progres-
sively shifting from virtual machines to containers as their
new compute instances. The container-enabled cloud ser-
vices, such as NoSQL database (e.g., Azure Cosmos [12]) and
serverless function compute (e.g., AWS Lambda [4]), neces-
sitate network access to either serve incoming requests or
interact with other services like cloud storage. The container
network is required to achieve not only high data plane
performance but also high deployment density, i.e., a large
number of virtual network devices on a single server, and
fast startup [2, 19, 21, 32, 45, 50, 54, 56, 57].

The hardware-assisted network device virtualization tech-
nology, Single Root I/O Virtualization (SR-IOV) [1], has
emerged as the best performing approach to simultaneously
satisfy the above three requirements for traditional contain-
ers. First, SR-IOV virtualizes a Network Interface Card (NIC)

1We are actually showing the performance of the optimized version of SR-
IOV CNI that resolves an implementation flaw of driver rebinding in Kata,
as described in §5. The original version [11] performs much worse.
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Figure 1. Overhead of enabling SR-IOV'on secure con-
tainer startup time with concurrency up to 200. The
concurrency setting is based on the statistics that over 200
container invocation requests arrive nearly simultaneously
at an Alibaba serverless platform node [32].

into multiple virtual NIC named Virtual Functions (VFs). It
allows containers to directly interact with the NIC resources
and achieve near bare-metal data plane performance, while
other network solutions, like software based network, incur
obvious overhead in throughput and latency [3, 13, 38, 46, 47].
Second, the deployment density of SR-IOV has also been
greatly improved with the emerging technologies mdev [53]
and scalable IOV [18]. The newest commercial NICs like
Mellanox CX-7 [49] and Intel IPU [26] have announced the
vanilla support of 1K VFs. Finally, the startup of SR-IOV
for a traditional container is fast, as its main procedure is
just moving a pre-created VF into the container’s network
namespace.

However, despite the commendable performance of SR-
IOV for traditional containers, it still falls short when applied
to secure containers. Secure containers like Kata [21] and
RunD [32] have nowadays become the mainstream choices
in multi-tenant clouds where security is highly valued. They
run the container processes inside micro Virtual Machines
(microVMs) with trimmed and independent kernels to pro-
vide better isolation against attacks such as privilege es-
calation. Due to the existence of the independent kernels,
an extra virtualization process named passthrough I/O is re-
quired for the VF to be used by the microVM. We find its
overhead greatly hinders the startup performance of secure
containers. Fig. 1 illustrates the effect of enabling SR-IOV
on the average time of concurrently starting 10 ~ 200 se-
cure containers. We observe that enabling SR-IOV incurs
a significant time overhead that increases with the concur-
rency. The time overhead is 12.2s when the concurrency is
200, increasing the average time by 305%. Such slow startup
poses a significant obstacle for developing a desirable secure
container network solution with SR-IOV.
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In this work, we look into the problem of achieving fast con-
current startup for SR-IOV in secure containers. By breaking
down the end-to-end concurrent startup procedure of SR-
IOV enabled secure containers, we identify several key bot-
tlenecks that have not been addressed before in low-density
scenarios. Then, we propose FastlOV, an SR-IOV based net-
work solution that tackles those bottlenecks and achieves
ultra fast startup. Our contributions can be summarized as
follows.

e Measurement results (§3): We dive into the details of the
components, from the user-space CNI plugin and the con-
tainer runtime, to the kernel-space device driver and OS
modules. Three major bottlenecks related to passthrough
I/O are identified: VFIO device set (devset) management,
DMA memory mapping and VF driver initialization. These
bottlenecks are not coupled with any specific CNI or se-
cure container framework implementations. They con-
tribute more than 70% and 80% of the average and 99th
percentile container startup time, respectively. As far as
we know, we are the first to thoroughly analyze and elabo-
rate on the end-to-end startup process of SR-IOV enabled
secure containers.

e Optimization solutions (§4): Targeting the key bottle-
necks, FastIOV first disassembles the coarse-grained lock
design in VFIO devset management by proposing a hier-
archical lock framework, which parallelizes VFIO device
operations while ensuring the consistency (§4.2.1). Sec-
ond, we identify the causes of the inefficiency in DMA
memory mapping as the mapping of unnecessary memory
regions and memory zeroing overhead. FastIOV tracks and
skips the unnecessary regions, and decouples memory ze-
roing from mapping to enable lazy zeroing (§4.3). Finally,
FastIOV asynchronously executes VF driver initialization
with container application launching, effectively masking
the overhead (§4.2.2).

¢ Implementation and performance gain (§6): We imple-
ment FastlOV with a portable Linux kernel module, a CNI
plugin, and other optimizations in the secure container
framework and OS modules. We conduct extensive exper-
iments and demonstrate that FastlOV reduces the time
overhead of enabling SR-IOV by 96.1%, leading to 65.7%
and 75.4% reductions in the average and 99th percentile
container startup time compared with vanilla SR-IOV CNI
[11]. We also evaluate FastlOV on four representative
serverless applications and show that FastIOV reduces the
average and the 99th percentile task completion time by
12.1%-53.5% and 20.3%-53.7%, respectively.

e Community contribution: We will open source the
whole implementation of FastlOV as well as the bench-
marking tools and dataset to benefit the community.
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(a) SR-IOV in passthrough I/O.  (b) Address spaces and translations.

Figure 2. SR-IOV and passthrough I/O architecture.

2 Background
2.1 SR-IOV and Passthrough I/O

Fig. 2(a) shows the architecture of SR-IOV with passthrough
I/0O. One SR-IOV NIC has a least one Physical Function (PF)
bound to the host OS through the PF driver, which man-
ages the overall resources of the NIC. The goal of SR-IOV
is to divide the NIC resources, such as registers and TX/RX
queues, into multiple isolated sets and generate multiple
virtual NICs, referred to as Virtual Functions (VFs). While
traditional containers can directly use the VFs as normal PCle
devices, secure containers require the further processing of
passthrough I/O to use the VFs.

On the data plane of the passthrough I/O, the data trans-
mission of each VF bypasses the host network stack and
the hypervisor, which shortens the I/O path and reduces
CPU overhead, leading to lower latency and higher through-
put. Such bypassing is achieved by the Direct Memory Ac-
cess (DMA) engine in the NIC. DMA utilizes the hardware-
assisted memory mapping module, i.e., Input/Output Mem-
ory Management Unit (IOMMU), to translate memory ad-
dresses and directly move packets between VF’s TX/RX
queues and microVM’s TX/RX buffers.

In contrast, the control plane still remains under the man-
agement of the hypervisor. The hypervisor first creates and
configures the VFs through PF drivers. When a VF is assigned
to the guest, i.e., microVM, it is bound to and managed by
a Linux driver named Virtual Function I/O (VFIO). The hy-
pervisor interacts with the VFIO driver to configure the cor-
responding memory mapping to the IOMMU module. After
the initialization is completed, the guest can directly interact
with the device in subsequent data transmission, and only
interrupt signals are relayed through the hypervisor.

2.2 Address Spaces and DMA Memory Mapping

Fig. 2(b) shows the memory address spaces of the SR-IOV
device, the host and the guest, in the context of passthrough
I/0. We use the packet receiving process via a VF as an exam-
ple to show how these address spaces are translated: (i) The
guest OS notifies the DMA engine in the NIC to write the re-
ceived packet to an I/O Virtual Address (IOVA). The IOVA is
often of the same value as the Guest Physical Address (GPA)
where the guest OS intends to store the received packets. (ii)
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Figure 3. End-to-End startup procedure of SR-IOV CNIL

The DMA engine refers to the IOMMU hardware to translate
the IOVA to the corresponding Host Physical Address (HPA)
and performs actual packet writes to the physical pages. The
translation is implemented by looking up a table in IOMMU,
i.e., I/O Page Table, which is maintained independently for
each guest. As mentioned in §2.1, the table entries are config-
ured by the VFIO driver when the VF is assigned to the guest,
and the configuration process is referred to as DMA memory
mapping. (iii) Upon completing the packet writes, the DMA
engine notifies the guest OS that the data is ready by an
interrupt relayed through the hypervisor. (iv) The guest OS
retrieves the packet from the GPA that maps to the HPA.
The mapping from GPA to HPA is implemented through a
hardware table named Extended Page Table (EPT).

2.3 Startup Procedure of SR-IOV CNI

To provide a better understanding of the startup procedure of
SR-IOV enabled secure container, we investigate the source
code of several widely deployed community projects includ-
ing the container orchestrator (Kubernetes/K8s [16]), con-
tainer engine and runtime (Containerd [15], Kata [21]), CNI
plugins (SR-IOV CNI [11] and sriovdp [10]), hypervisors
(Kata-QEMU [21, 22] and KVM [34]) and Linux kernel [35],
and summarize it in Fig. 3.

Before the K8s agent, i.e., Kubelet, is informed to invoke
multiple secure containers concurrently, it asynchronously
calls the PF driver to create enough VFs. This pre-operation
time t,, is often large because it involves the hardware
reconfiguration of the SR-IOV enabled NIC. Since the VF
creation needs only to be done once after the booting of the
host OS, we ignore this operation and exclude #,,, from the
total time ;4447 in the rest of the paper. The container engine,
i.e., Containerd, is responsible for the life-cycle management
of the containers. It first creates the isolated Network NameS-
pace (NNS) for each container and then successively calls the
CNI plugin and the container runtime for VF configuration.
The CNI plugin calls the PF driver to set up VF parameters
like VLAN ID and rate limit, and then moves the VF to the
container NNS (cf. tconfig in Fig. 3). The container runtime
checks the existence of the VF in the NNS and assigns it to
the microVM (cf. t4¢44ch in Fig. 3). The assigning process first
binds the VF to the VFIO driver. Then the VFIO driver at-
taches the VF to the microVM by setting up the passthrough
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I/O as introduced in §2.1 and emulating the VF as a PCle
device. Like VF creation, the binding operation is a one-time
task after booting the host server and its time cost can be
ignored. Finally, the network driver of the VF inside the mi-
croVM, i.e., VF driver, initializes and sets up the device as a
Linux network interface.

It should be noted that the underlying logic of config-
uring a VF and attaching it to the microVM is in fact the
same as that of enabling SR-IOV for a normal VM. How-
ever, compared with the normal VM use case, container ap-
plications have higher-volume invocation requirement and
shorter lifespan, leading to higher requirement as well as new
bottlenecks in startup time. This calls for further bottleneck
identification and motivates our design for FastIOV.

3 Measurement and Motivation

3.1 Testbed for Startup Performance Measurement

Hardware setup. Our testbed uses servers that mirror the
configurations used by leading cloud service providers’ pro-
duction environments. The specification includes: (i) CPU:
Two NUMA-capable Intel Xeon Gold 6348 sockets running at
2.60 GHz, each housing 28 cores complemented by 80KB/1280
KB/42MB L1/L2/L3 Caches and with hyper-threading acti-
vated. (ii) Memory: 256GB DDR4 with 3200MHz clock fre-
quency. (iii) NIC: A 25 GbE Intel E810 NIC that supports
creating 256 VFs. Note that we also test with another NIC,
200 GbE Intel Mount Evans E2100 and observe similar results.

Software setup. The servers run CentOS 7 with Linux ker-
nel v6.4.0. We choose the widely deployed container engine
Containerd v1.7.3 [15], secure container runtime Kata Con-
tainers v3.2.0 [21] and SR-IOV CNI plugin v0.3 [11]. Kata
Containers tailor the QEMU v6.2.0 hypervisor into a light-
weight version named Kata-QEMU [21]. The kernel of the
microVM is generated from Linux kernel v5.19.2, and the
image is generated from Ubuntu 20.04. For each secure con-
tainer, we allocate 0.5 vCPU and 512MB RAM through the
configuration of Kata-QEMU and allocate one SR-IOV VF as
its virtual NIC through the configuration of Containerd.

Measurement methodology. In the tests of startup time,
we use crictl command to create the microVM without any
container applications inside, as enabling SR-IOV only af-
fects the startup process of the microVM. When we evaluate
the performance of FastIOV on serverless applications in
§6.6, we will report the task completion time, i.e., the dura-
tion between the issuance of the startup command and the
completion of the container application. To break down the
timeline of the startup process, we develop a logging tool and
integrate it into the above software components like Kata-
QEMU and Linux kernel to collect finer-grained information.
We ensure that the logging operations are asynchronous and
our tests show that they incur nearly no additional overhead
in startup time.
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Figure 4. Breakdown of time-consuming steps. 200 SR-
IOV enabled secure containers are launched concurrently.

3.2 Bottleneck Identification for SR-IOV CNI

3.2.1 Measurement result. We break down the timeline
of concurrently starting 200 secure containers and show the
most time-consuming steps in Fig. 4 and the corresponding
statistics in Tab. 1. In the figure, (i) each horizontal line group
stands for the timeline breakdown of each secure container;
(ii) the segmented lines with different colors in each hor-
izontal line group represent the different time-consuming
steps. First, we observe that 4-vfio-devset, i.e., the opening
of the VF from its VFIO device set, dominates the total time
consumption and possibly experiences severe serialized op-
erations. Second, other SR-IOV VF-related steps like DMA
memory mapping (1-dma-ram and 3-dma-image) and the
initialization of network interface by the VF driver inside
the microVM (5-vf-driver) also incur obvious overhead. The
other two steps, i.e., 0-cgroup and 2-virtioFS, refer to the pro-
cess of setting up cgroups and shared file system for the
secure container, and they are not related to the enabling of
SR-IOV. Statistics in the table show that the VF-related steps
take up 70.1% in the average startup time. The proportion
increases to 80.8% when considering the long-tail latency
with the 99th percentile. These statistics reveal a large room
for accelerating the startup process. Next, we will analyze
the root causes of the observed major bottlenecks before
introducing our solutions in FastIOV.

3.2.2 Bottleneck 1: VFIO devset management. In the
VFIO driver, a devset is used to manage a group of VFIO de-
vices and control their reset behavior. When a device is bound
to the VFIO driver, the VFIO driver first checks whether the
device is attached to the PCI root bus or has the slot level
reset capability. If neither, it means the reset of the device
has to be performed at the bus level, i.e., all devices attached
to the same bus are reset together, and those devices are put
into the same devset group. The main purpose of the devset
is to ensure that when one VFIO device is being reset, all
other VFIO devices affected are ready for reset as well. This
requires that first, the VFIO driver scans the PCI bus to check
if all devices on the bus are maintained in the VFIO devset
group to ensure that no affected device is managed by other
drivers. Second, the VFIO driver checks the total open count,

Anon. Submission Id: #97

Proportion in Proportion in

Step Average Time (%)  99th Percentile Time (%)
0-cgroup 29 2.3
1-dma-ram 13.0 11.1
2-virtiofs 13.3 13.6
3-dma-image 5.6 4.3
4-vfio-devset 48.1 59.0
5-vf-driver 3.4 4.1
Total (1, 3, 4, 5) 70.1 80.8

Table 1. Time proportions of time-consuming steps.
The VF-related steps (1, 3, 4, 5) take up more than 70% and
80% of the average and 99th percentile startup time.

i.e., the number of processes or threads that are currently
keeping the device open, of the devices in the devset group
to ensure that no affected device is currently being used.

When attaching a VF to the microVM, one of the key steps
is to register it in the hypervisor. During registration, the hy-
pervisor opens the VF through the VFIO driver, and obtains
the file descriptor and other relevant device information. The
opening of the VF increases its open count, and further af-
fects the global state, i.e., the total open count, of the devset.
To ensure the correctness of the states, the current design of
the VFIO driver utilizes one global mutex lock to make the
operations on the VFIO device and the operations involving
checking or updating the global state of the devset mutually
exclusive. However, such coarse grained mutex lock also
serializes the opening operations on the different VFs
belonging to the same devset, and thus hinders the con-
current startup process of SR-IOV enabled secure containers.
This accounts for the nearly linear increase in the time cost
of 4-vfio-dev observed in Fig. 4.

3.2.3 Bottleneck 2: DMA memory mapping. Apart from
the registration of the VFIO device, another key step in at-
taching a VF is the DMA memory mapping. As introduced
in §2.1, the hypervisor configures the IOMMU to establish
the mapping for the microVM memory so the DMA data
transmission operations can be correctly performed by the
NIC. The DMA memory mapping process can be summa-
rized as three major steps: First, the physical memory for the
microVM is allocated in the host to obtain the correspond-
ing HPA. Then the allocated physical memory is pinned in
the system to keep it from being swapped out, so that the
corresponding HPA remains effective. Finally, the mapping
between HPA and IOVA is configured to the page table in
IOMMU. We further illustrate the steps in Fig. 5 and analyze
the cause of overhead. In the figure, retrieving and zeroing
correspond to the first major step, pinning and mapping cor-
respond to the other two steps, respectively.

o Page retrieving: When allocating physical memory for the
DMA memory, the VFIO driver iteratively collects free
physical pages until the requested total size is satisfied.

o Page zeroing: Free pages can contain residual data, which
might lead to potential security issues in multi-tenant
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Figure 5. DMA mapping procedure. 4 main steps (page
retrieving, zeroing, pinning, mapping) and 3 sub-bottlenecks.

clouds. Thus, the current physical memory allocation im-
plementation ensures that these retrieved physical pages
are filled with zeros to clear any sensitive information
before they are returned to the VFIO driver.

e Page pinning: Once all free pages are retrieved and ze-
roed, they are pinned by the VFIO driver: their reference
counts are increased to prevent them from being moved
or swapped out by the OS. This ensures that the physical
address of a physical page remains constant and the corre-
sponding HPA remains effective during DMA operations.

e Page mapping: Then, the IOMMU’s page table is updated
to set up the mapping between the pinned physical pages
(HPA) and the virtual addresses that the device will use
(IOVA) for DMA operations.

During the profiling of DMA memory mapping process,
we find the following three key factors that make DMA
memory mapping a bottleneck in the startup process.

First, there exists unnecessary DMA memory map-
ping in the microVM (P1 in Fig. 5). The original design
of the VFIO driver and IOMMU performs DMA mapping for
all regions in the memory space of the microVM, as they as-
sume that all the regions have the possibility to be accessed
by DMA. However, we identify that the mapping of the mi-
croVM image memory region is unnecessary. The image con-
tains the system files of the microVM and a secure container
agent procedure used for managing container applications.
Its region is read-only and invisible to the container appli-
cations that launch DMA operations. In our measurement
setup, the microVM image uses 256MB of memory, and Tab. 1
shows that constructing memory mapping of this region con-
stitutes 5.6% (1-dma-image) of the total time cost, but the
cost is avoidable.

Second, fragmented small physical pages incur a high
retrieving costs (P2 in Fig. 5). When the VFIO driver it-
eratively collects free physical pages, the free pages with
continuous HPAs will be grouped together and operated as a
batch to reduce the time overhead caused by excessive func-
tion calls. When the physical pages experience more frag-
mentation, fewer pages will be batched, resulting in higher
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retrieving cost. However, we find that such overhead is al-
ready effectively mitigated by simply enabling hugepages,
a common practice in production environment, as it signif-
icantly reduces the number of pages to retrieve. Thus this
cause of bottleneck is not a focus of our optimization.

Third, page zeroing incurs a significant time cost (P3
in Fig. 5). After reducing the retrieving cost by enabling
hugepages, we find that page zeroing contributes to over
93% of the total DMA memory mapping time. Such time
cost is not caused by any lock contention but pure zeroing
operations. When SR-IOV is not enabled, no DMA memory
mapping is performed, and a physical page of the microVM
memory is allocated only when it is actually accessed by the
application. As a consequence, a page is zeroed only when
it is read or written. We refer to this as lazy zeroing, which
avoids the zeroing overhead during startup as well as the
zeroing of unused memory. Our key observation is that page
zeroing can be decoupled from physical memory allocation
in DMA memory mapping, which makes it possible to en-
able lazy zeroing for SR-IOV enabled secure containers and
motivates our design.

3.2.4 Bottleneck 3: VF driver initialization. After the
VFIO driver configures the VF and hands it over to the mi-
croVM, a two-step initialization proceeds to set up the VF
as a Linux network interface inside the microVM. First, the
VF driver conducts PCI device enumeration to identify the
device, registers the device as a network interface, configures
its network parameters and updates its link status. Second,
the daemon agent of the secure container framework inside
the microVM assigns MAC and IP addresses to the interface.
It takes a few hundred milliseconds up to seconds for all
these operations to complete, and then the interface becomes
available. This time cost further increases with the container
concurrency. As secure container frameworks manage the
initialization and other setup procedures of the microVM
in a serial fashion, it only executes the subsequent setups
after the interface becomes available, causing non-negligible
overhead to the startup performance. Our design will show
that such overhead can be effectively mitigated with asyn-
chronous execution.

4 Design
4.1 FastlOV Overview

Fig. 6 displays the key components of FastIOV, including lock
disassembling, unnecessary mapping skipping, decoupled
zeroing and asynchronous execution. The four optimiza-
tions aim at addressing the bottlenecks analyzed in §3.2 to
speedup the concurrent startup process. The main workflow
of FastIOV is as follows.

When SR-IOV enabled secure containers are launched,
VFs are attached to microVMs concurrently. First, FastiOV
disassembles the coarse-grained lock in VFIO devset man-
agement by proposing a hierarchical lock framework (§4.2.1).
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Figure 6. FastlOV Overview.

By doing so, FastIOV parallelizes the device opening opera-
tions during device registration while maintaining the state
correctness of VFIO devset. Then, when the VFIO driver per-
forms DMA memory mapping for the VFs, FastIOV tracks
and skips the unnecessary mapping region, i.e., microVM im-
age memory (§4.3.1). As for the remaining regions, FastiOV
decouples page zeroing from physical memory allocation to
enable lazy zeroing (§4.3.2), which avoids the zeroing time
overhead during startup as well as the zeroing of unused
memory. Finally, FastlOV asynchronously executes the VF
driver initialization inside the microVM and overlaps it with
the launching of container application to mask the overhead
(§4.2.2).

Next, we will introduce the optimizations in detail. As lock
disassembling and asynchronous execution are both aimed
at parallelizing operations for speedup, we put them in the
same category and introduce them first.

4.2 Parallelizing Operations

4.2.1 Lock disassembling in VFIO devset. The coarse
lock problem in VFIO devsets can be abstracted as follows. A
devset acts as a parent node and the VFIO devices belonging
to it act as child nodes. The parent node has a global state,
which is related to the local states of its children. The current
design of VIFO driver implements only a global mutex for
the entire devset, so it requires the contention of the same
mutex whether it is to access the global state of the parent
or the local state of a child. When a heavy contention occurs
in inter-child operations, e.g., concurrently opening multi-
ple VFs, the system parallelism degrades significantly. On
the other hand, simply removing the global mutex will com-
promise the state consistency in the multi-thread accessing
procedure. Our insight is that we can disassemble the lock
to enable independent inter-child operations and hence im-
prove the startup performance, while keeping other operations
mutually exclusive to ensure the consistency.

We distinguish four types of relations between operations
according to the data they access: (i) inter-child operations
access the local states of different child nodes, (ii) intra-child
operations access the local state of the same child node, (iii)
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Figure 7. Lock disassembling with parent-child lock

intra-parent operations access the global state of the par-
ent node, (iv) parent-child operations access the global state
of the parent node and the local states of a child node, re-
spectively. As shown in Fig. 7(a), inter-child operations are
independent and can be performed in parallel, while opera-
tions of the other three types should be mutually exclusive
and performed in serial.

To achieve the above requirements, we propose a hier-
archical lock disassembling framework built on two Linux
kernel locks, read/write lock (rwlock) and mutex, as shown
in Fig. 7(b). In this framework, the parent node is equipped
with a global rwlock and each child node i is equipped with
a local mutex;. When accessing the global state, one needs
to acquire the rwlock write permission (denoted by ac-write).
When accessing the i-th local state, one needs to acquire
both the rwlock read permission (denoted by ac-read) and
mutex; (denoted by ac-mutex;).

We can show that the proposed disassembling framework
indeed satisfies the requirements. Here we consider the case
of inter-child operations. The other cases can be shown in a
similar fashion and omitted. Suppose two inter-child oper-
ations on local state i and local state j occur concurrently.
Since two ac-reads are independent according to the defi-
nition of rwlock, and ac-mutex; and ac-mutex; are naturally
independent, these operations can be executed in parallel.

Although inventing a new Linux kernel lock can also sat-
isfy the requirements, we believe that reusing off-the-shelf
kernel locks keeps the design simple and ensures the ef-
fectiveness. Moreover, we believe this lock disassembling
framework can be promoted to other scenarios rather than
just being used in the VFIO devset.

4.2.2 Asynchronous execution in VF driver initializa-
tion. We make two observations regarding the VF driver
initialization process, where the network driver inside the
microVM initializes and sets up the VF as a Linux network
interface. First, the network interface is not utilized until
the container application is launched and begins execution
inside the microVM. Second, the initialization of the net-
work interface is independent of the other startup stages.
This allows the asynchronous execution of the initialization
in parallel with other stages, in particular the launching of
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Host OS

container application in the microVM. The launching pro-
cess involves transferring container images from the host
to the microVM via the shared filesystem and creating the
container process. Our empirical measurements show that
with a high container concurrency of 200, this process can
span several seconds, which is enough to mask the initial-
ization time. We adapt the secure container framework to
initialize the network interface asynchronously and employ
the framework’s daemon agent inside the microVM to peri-
odically check the status of the network interface, ensuring
the network is available as the application begins execution.

4.3 Accelerating DMA Memory Mapping

4.3.1 Skipping unnecessary mapping region. FastlOV
tracks and skips the unnecessary DMA memory mapping,
i.e., microVM image memory, to reduce the overhead. Before
the hypervisor, e.g., QEMU, enumerates the DMA memory
regions and calls the VFIO driver to perform DMA memory
mapping, FastlOV notifies the hypervisor of the information
of the image memory region, i.e., its name and size. The
hypervisor then skips DMA memory mapping for this region
and falls back into its non-DMA memory managing logic.

4.3.2 Decoupling zeroing from mapping. For the re-
maining regions that are not skipped, i.e., the RAM of the
microVM, FastIOV decouples the page zeroing operation
from physical memory allocation to enable lazy zeroing. Re-
call that lazy zeroing means the physical pages are zeroed
only when they are actually read or written. The high level
idea is to intercept the memory access to physical pages con-
ducted by the microVM, and perform page zeroing when the
page is read or written for the first time. We identify three
key challenges in achieving this goal.

o First, when a microVM accesses a physical page, it by-
passes the hypervisor and relies instead on the hardware-
assisted module EPT (previously introduced in §2.1) for
address translation. How can we intercept this process
and zero the physical pages before their usage?

e Second, if we intercept every memory access to check
whether the physical pages are accessed for the first time,
it will be very costly and significantly degrade memory
performance. How can we avoid such overhead?
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o Third, there exist exceptions that the first memory access
to a physical page is not conducted by the microVM that
it is allocated to. Specifically, the hypervisor may write to
the physical pages before starting the microVM, and the
para-virtualization components like the shared file system,
i.e., virtioFS, may write to the physical pages before the
microVM reads from them. In such cases, the relevant
physical pages should be zeroed before being used by
the hypervisor or para-virtualization components, and
require no further zeroing before the first access by the
microVM. How do we deal with such exceptions to ensure
the correctness of zeroing?

The rest of §4.3.2 presents the detailed designs and show
how FastIOV solves the above problems.

EPT fault based memory access interception and lazy
zeroing. After digging into the details of the EPT address
translation mechanism, we find that the entries in the EPT
are constructed by an EPT fault right before the correspond-
ing physical pages are read or written for the first time. The
EPT fault carries the information of the accessed physical
pages and is perceived by KVM, a hypervisor module. This
gives us the opportunity to intercept the information and per-
form lazy zeroing. Recall that when the microVM is launched,
the VFIO driver performs DMA memory mapping, which
allocates physical memory for the microVM. As shown in
Fig. 8, the physical memory allocation generates the HVA-
HPA mapping in the Memory Management Unit (MMU) of
the host (D). Also during the launch of the microVM, the hy-
pervisor module KVM sets up and maintains the GPA-HVA
mapping ((2)). When the microVM accesses a GPA for the
first time, it looks it up in the EPT, only to find that there
is no match entry (). Then the microVM triggers an EPT
fault, which sends KVM an EPT violation signal containing
the GPA information ((®). KVM then translates the GPA to
HVA, and utilizes the MMU to translate the HVA to HPA
(®). Finally, KVM inserts the GPA-HPA mapping entry into
the EPT ((»), which is now ready for use by the microVM.

By intercepting the HPA information in the KVM, we can
perform lazy zeroing during the EPT fault for the correspond-
ing physical page. As the EPT fault is only generated the first
time a physical page is accessed, no subsequent access to the
same physical page will be intercepted, thus minimizing the
impact on memory performance. Our evaluation in §6.5 will
show that the incurred overhead is negligible.

Ensuring the correctness of lazy zeroing. We identify
that there are exactly two exceptional scenarios where a
physical page requires no further zeroing before the first
access by the microVM.

o Hypervisor data write. Before launching a microVM,
the hypervisor writes to the memory allocated to it in
order to perform necessary setup, including loading read-
only regions like BIOS and kernel into the memory. Such
writes are performed directly without involving the EPT.
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After launching, when the microVM tries to access these
memory regions for the first time, e.g., to execute kernel
code, it will trigger an EPT fault and cause FastIOV to
incorrectly zero the data written by the hypervisor, leading
to a system crash.

e Para-virtualization based data transfer. Devices can
utilize para-virtualization protocols, like the widely used
virtio protocol, to exchange data between the microVM
and the host through shared buffers. A typical example is
the virtioFS, which is a shared file system that allows
the container inside the microVM to access designated files
on the host. When the microVM reads a file, it first writes
the addresses of the file and a shared buffer into a vring,
which is itself a shared buffer. The backend of virtio on the
host fetches the addresses from the vring, writes the file
data into the shared buffer, and notifies the microVM to
read it. If the buffer memory has not been accessed before
by the microVM, the read operation will trigger an EPT
fault, which will cause the FastIOV to incorrectly zero the
requested file data before it is read.

To ensure the correctness of lazy zeroing, FastIOV tackles
the above two problems by maintaining an instant zeroing
list and triggering proactive EPT fault, respectively.

The instant zeroing list is a white list of physical pages
that are not managed by FastlOV and are zeroed instantly
when they are allocated. The read-only memory regions like
the BIOS and kernel memory are determined before the start
of the microVM, and the hypervisor registers them to the
instant zeroing list maintained by FastIOV. The exclusion
of those regions from its management may limit the gain
of FastIOV. However, our test shows that with a normal
Linux kernel, those regions take up only about 9.4% of the
total memory for a microVM with 512MB of memory. The
percentage decreases with a larger allocated memory, as the
size of the excluded regions remains fixed. Thus FastIOV
can still effectively reduces DMA memory mapping time by
optimizing the page zeroing of the remaining regions.

To address the exception caused by para-virtualization
based data transfer, we proactively triggers EPT faults when
the microVM writes the address of a shared buffer to the
vring, so that FastlOV correctly zeroes the corresponding
physical pages before the backend of virtio on the host writes
the file data back into the buffer. Such proactive EPT faults
are triggered by performing data read to the first byte of
each page of the buffer.

5 Implementation

The implementation of FastIOV includes a portable Linux
kernel module named fastiovd, a FastlOV CNI plugin,
and several modifications in the hypervisors, container frame-
works and host/guest kernel modules. Fig. 9 illustrates their
detailed functionalities and the statistics of lines of code
(LoC). Note that FastIOV is deployable because all of those
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Figure 9. Implementation of FastIOV.

new modules and modifications are within the management
of the cloud vendor. Several details are presented below.

Lazy zeroing implementation. First, we disable the origi-
nal page zeroing operation in the VFIO kernel module, and
maintain in fastiovd a two-tier hash table containing the
information of the physical pages to be lazy zeroed. The
first-tier key uses the process ID (PID) as the independent
identifier for each microVM, and its value is the pointer
to the secondary hash table maintained for that microVM.
The second-tier key is the HPA and its value contains de-
tailed page information. Second, we modify the KVM module
to trigger lazy zeroing before it inserts the EPT entry dur-
ing an EPT fault. The KVM notifies fast iovd of the page
triggering the EPT fault. If it is in the two-tier hash table,
fastiovd will zero the page, remove it from the hash ta-
ble, and notify KVM upon completion. Besides the above
lazy zeroing logic, we also maintain a background thread
in fastiovd, which periodically scans the two-tier hash
table, zeroes the remaining pages, and then removes them
from the table. Such background clearing in fact overlaps
the zeroing with other startup stages to reduce the EPT fault
time to further improve container application performance.

FastIOV CNI plugin implementation. The vanilla SR-
IOV CNI plugin [11] is designed for traditional containers,
where it pre-binds VFs to the host network driver, and simply
moves a pre-bound VF to the container network namespace
when launching a container. However, when it is applied to
secure containers, the pre-binding requires the Kata runtime
to rebind the VF to the VFIO driver every time a microVM is
launched. Such rebinding is time-consuming and should be
avoided. We find that the only reason for pre-binding is to
generate a Linux network interface, which serves two func-
tions. First, the Kata runtime identifies the VF by detecting
the interface. Second, the CNI performs network operations
like IP configurations on the interface, which then passes
the configurations to the Kata runtime when it is detected.
Therefore, to free VFs from pre-binding, we create dummy
Linux network interfaces to fulfill the above two functions
instead. This allows us to bind the VF to the VFIO driver
only once after the server’s booting as mentioned in §2.3.
This simple optimization greatly reduces the startup time of
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vanilla SR-IOV CNI, from several minutes to 16.2 seconds
when concurrently starting 200 containers. However, we re-
gard this binding problem as an implementation drawback
that may depend on the specific container framework, Kata
containers in this case. In order to focus on problems intrinsic
to the SR-IOV CNI, we apply the above optimization to the
vanilla SR-IOV CNI in our evaluation for fair comparison.

6 Evaluation
6.1 Experiment Setup

Testbed setup. We conduct two categories of experiments
that evaluate FastlOV’s network startup performance and
overall performance with serverless application benchmarks,
respectively. The former runs on a single test server, while
the latter on two directly-connected test servers acting as
the application server and the storage server, respectively.
All test servers mentioned above have the same hardware
and software configurations as specified in §3.1.

Baselines. We compare FastlOV with the following base-
lines to validate the effectiveness of our designs.

e No network: The startup without enabling network. This
represents a lower bound for optimizing network startup.

e Vanilla: The original implementation of SR-IOV CNI [11]
without optimization for passthrough I/O. Recall that for
fair comparison, we enhance Vanilla with the dummy
Linux network interface optimization as described in §5.

e FastIOV variants: In order to evaluate the effectiveness
of our four optimization designs, i.e., Lock disassembling,
Asynchronous execution, unnecessary mapping Skipping
and Decoupled zeroing, we remove them from FastlOV
one at a time and get FastIOV-L, FastlOV-A, FastIOV-S and
FastIOV-D, respectively.

e Memory pre-zeroing methods: Memory Pre-zeroing
is a popular technique proposed by HawkEye [52] that
performs page zeroing during memory idle time to achieve
faster page fault. It has also been utilized by the open-
source community to speedup DMA memory mapping
and accelerate the booting of passthrough I/O enabled
VMs. The performance of this baseline is affected by the
fraction of memory pre-zeroed during memory idle time.
To evaluate its performance across different scenarios, we
set the fraction to be 10%, 50% and 100%, and represent
them by Prel10, Pre50 and Pre100, respectively.

e Software CNI: Besides the SR-IOV baselines, we also
compare FastIOV to a software CNI in §6.4 aiming at
illustrating the bottleneck differences between the two
types. We choose the basic software CNI IPvtap, because
(i) it shares similar virtual network device implementation
with popular software CNIs like Flannel [9] and Calico [7],
but has faster startup due to its lack of support for more
advanced network features; and (ii) it is the basic soft-
ware CNI with the fastest startup for secure containers
according to our preliminary measurements.
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6.2 Startup Performance

We compare FastIOV with other baselines by measuring the
startup time with 200 concurrently invoked secure contain-
ers. Fig. 10 displays the average time and the breakdown into
two parts, VF-related and others. VF-related refers to the time
of the four VF-related stages previously introduced in §3.2
and others represents the remaining part of time. We draw
the following three key conclusions from the results.

First, FastIOV significantly outperforms the vanilla SR-
IOV CNI in both the average and long-tail time cost. FastIOV
reduces the average startup time by 65.7% compared with
vanilla. Specifically, FastIOV reduces the time overhead di-
rectly related to VF operations by 96.1%, significantly miti-
gating the effect of enabling VF on secure container startup.
Moreover, the time distribution in Fig. 11 shows that Fas-
tIOV also reduces the 99th percentile startup time of vanilla
by 75.4%, largely improving the long-tail performance. In
addition, FastIOV achieves a startup time close to that of
No-Net, with the average and the 99th percentile startup time
being 39.1% and 11.6% higher, respectively. In contrast, the
corresponding figures of vanilla are substantially larger, i.e.,
305.2% and 354.5%.

Second, each of our optimization techniques makes obvi-
ous contribution to the time reduction achieved by FastIOV.
Compared with Vanilla, FastlOV-L, FastIOV-A, FastIOV-S and
FastIOV-D reduce the average time by 21.8%, 40.3%, 58.2%
and 43.7%, respectively, all smaller than the 65.7% reduction
achieved by the full FastIOV.

Third, FastIOV outperforms the memory pre-zeroing meth-
ods and further reduces the average time by 56.4% compared
with Pre100. The performance of pre-zeroing strongly de-
pends on the fraction of memory pre-zeroed during memory
idle time. In practice, cloud vendors tend to maintain a high
level of memory utilization for more revenue. For example,
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Figure 12. Impacting factors.

AWS uses a bin-pack algorithm for this purpose, and its av-
erage server memory utilization ranges from 84.6% to 100%,
with a median of 96.2% [59]. This leaves short memory idle
time and can further limit the performance of pre-zeroing.

6.3 Impacting Factors

Concurrency. Fig. 12(a) shows the impact of varying concur-
rency. It reports the startup time distribution with container
concurrency increasing from 10 to 200 and each allocated
512MB of memory. We observe that FastIOV is effective
across all concurrency, achieving time reductions ranging
from 46.7% to 65.6%. The reduction is more obvious with a
higher concurrency, as the lock contention in VFIO devset
becomes more severe with more concurrently invoked VFs.

Resource allocation. Fig. 12(b) shows the impact of varying
per-container resource requirement. More precisely, it shows
the time distribution of concurrently starting 50 containers
with memory allocation for each container increasing from
512MB to 2GB. We observe an obvious increase of 60.5% in
the average startup time of vanilla as the memory alloca-
tion increases to 2GB, while only 21.5% with FastIOV. This
is because the optimization of Fast/OV on DMA memory
mapping makes its startup time less sensitive to allocated
memory. Thus it achieves higher time reduction ratio when
more resources are allocated.

Fully loaded server. As mentioned before, cloud vendors
like AWS tend to schedule containers to maximize the uti-
lization of server resources, i.e., memory and CPU. Here we
consider a scenario that tries to partially capture this behav-
ior. We vary the concurrency, and for each given concurrency,
we evenly divide all the resources of the server among the
concurrent containers. Note that fewer containers means
more allocated resources for each. The startup time distri-
bution in Fig. 12(c) shows that FastIOV achieves large time
reductions across all settings, even with low concurrency.
In fact there is an increase in the time reduction ratio, from
65.7% to 79.5% as the concurrency decreases from 200 to 10.
This is because a lower concurrency reduces the time of the
other startup steps unrelated to SR-IOV, while the optimiza-
tion of DMA memory mapping is unaffected, as the total
allocated memory stays unchanged.

(c) Fully loaded server.

10

Figure 13. Comparison with software CNI.

6.4 Bottleneck Differences with Software CNI

We compare FastlOV with the software CNI IPvtap to illus-
trate how the startup bottlenecks of a software CNI differ
from those of an SR-IOV based solution. The software CNI
emulates the physical network devices of microVMs, and
thus obviates the time-consuming passthrough I/O setup
procedure. A comparison of Fig. 10 and Fig. 13 shows that
IPvtap has faster startup than vanilla SR-IOV, although with
a much worse data-plane performance. On the other hand,
Fig. 13 shows that FastIOV achieves 41.3% and 31.8% lower
total and average startup time than IPvtap.

The deficiency of IPvtap results mostly from two parts:
(i) the creation and configuration of the virtual network de-
vice (denoted by addCNI), and (ii) the host resource isolation
(denoted by cgroup). Through detailed measurements, we
identify that the severe lock contentions in the kernel net-
work calls and cgroup operations bring in much overhead.
In contrast, SR-IOV based CNIs attach VFs to the secure
container without creating any additional virtual network
device. Thus with FastlOV optimizing the time-consuming
passthrough I/O setup procedure, a SR-IOV based solution
is more capable of achieving ultra-fast concurrent startup
for secure containers.

6.5 Impact on Memory Access Performance

To evaluate the effect of FastlOV on the memory access per-
formance, we use an open-source tool Tinymembench to test
the memory throughput and latency within the secure con-
tainer. To obtain the throughput, the tool performs memcpy
operations on 2048-byte data blocks for 5 seconds and repeats
the whole process for 10 times. To obtain the latency, it per-
forms random byte reading for 10 million times. The results
show that FastIOV achieves comparable memory access per-
formance as vanilla, with memory throughput degradation
and latency increase within 1%. Since FastIOV only inter-
cepts the EPT page fault once upon the first-time memory
access, it does not affect the subsequent memory operations
and thus causes negligible performance degradation.

6.6 Performance in Serverless Applications

Benchmark applications. To evaluate the overall speedup
brought by FastIOV on serverless applications, we choose
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Figure 15. Performance of FastIOV on serverless applications with varying concurrency (a~d), varying resource
allocation (e~h), or fully loaded server (i~1). R-ratio: time reduction ratio achieved by Fast/OV compared with Vanilla.

four representative tasks, i.e., Image, Compression, Scientific
and Inference, from the widely adopted SeBS [17] serverless
benchmark. Image resizes an input image to a thumbnail of
size 100x100. Compression zips an input file of 9.7MB. Sci-
entific performs a breadth-first search to traverse a graph
of 100000 nodes. Inference utilizes ResNet-50 model for Ima-
geNet classification task. Each application first downloads
input data from the storage server through the VF assigned
to its secure container before performing the computation.

Overall performance. Fig. 14 illustrates the task comple-
tion time distribution of running the four serverless appli-
cations on 200 concurrently launched containers. The task
completion time refers to the duration from the issuing of
the startup command to the completion of the container
application. Compared to vanilla, FastIOV achieves 12.1%-
53.5% and 20.3%-53.7% reduction in the average and the 99th
percentile task completion time across all applications. We
notice that the reduction ratio decreases from application
Image to Inference, which is attributed to the fact that the
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task execution time increases from Image to Inference, reduc-
ing the portion that container startup takes up in the total
time. This suggests that the benefits of FastlOV are more
pronounced with shorter-lived applications.

Impacting factors. Similar to §6.3, we evaluate the perfor-
mance of FastlOV on serverless applications with varying
concurrency, varying resource allocation, and also in the
case of a fully loaded server. Fig. 15 reports the average task
completion time as well as the time reduction ratio achieved
by FastIOV. The overall trend is similar to that in §6.3: (i) with
a fixed per container resource allocation, FastlOV achieves
higher performance gain with a higher concurrency (a~d);
(if) with a fixed concurrency, FastIOV achieves higher per-
formance gain with larger per container resource allocation
(e~h); (iii) with a fully loaded server, FastlOV achieves ob-
vious time reductions across all applications and all con-
currency settings, and the reductions are pronounced with
lower concurrency (i~1).
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Compared with §6.3, there is a notable difference when
we vary the resource allocation per container: with more re-
source allocation, the task completion time of FastIOV stays
unchanged (cf. Fig. 15(e) and Fig. 15(f)) or even decreases
(cf. Fig. 15(g) and Fig. 15(h)). This is because the increased
resource allocation shortens the task execution time and
thus reduces the task completion time for FastIOV. How-
ever, the task execution time reduction fails to outweigh
the increased DMA memory mapping overhead for vanilla,
thereby increasing its task completion time. This demon-
strates that FastIOV enables applications to more effectively
reap the benefits of increased resource allocation.

7 Related Works

CNI enhancements. The cloud-native community has been
proposing plenty of widely-used CNI plugins like Flannel
[9], Calico [7] and Cilium [8]. The state-of-the-arts mainly
choose them as baselines and try to optimize their data-plane
performance using techniques like pipeline parallelism [29],
resource allocation optimization[28] or VXLAN enhance-
ment [14, 33]. Relatively fewer works have recognized the
significance of the startup performance [45, 57], and those
works only optimize the startup of software based CNIs for
traditional containers. PCPM [45] pre-creates the virtual
network devices and network configurations as pause con-
tainers, and dynamically attaches them to newly launched
containers. However, when using SR-IOV for secure contain-
ers, the startup bottleneck does not lie in the creation of the
VFs but in the attaching process. Particle [57] identifies the
startup bottleneck of using the veth-based software CNI
as the NNS moving and resolves this problem by sharing
the NNS. However, our previous measurements show that
this time cost is not the key bottleneck when using secure
containers either with software based or SR-IOV based CNIs.

SR-IOV enhancements. Due to the good data-plane per-
formance with the high throughput and low latency, SR-IOV
outperforms other forms of network I/O virtualization and
has been widely adopted in various applications [3, 13, 20, 25,
38, 41, 46, 47]. Many works make a step further to enhance
SR-IOV’s performance. They make up for the lack of the live
migration [24, 51, 61, 63], improve the deployment density
[18, 44, 53], avoid the performance degradation caused by
frequent transmission interrupts [23, 31] and enhance the
logic isolation and performance isolation for multi-tenancy
scenarios [27, 64]. However, none of those works recognizes
the demand for improving SR-IOV’s concurrent startup per-
formance or provides solutions as we do in this paper.

Passthrough I/0O optimizations. An important line of
work regarding passthrough I/O is the optimization of the
IOMMU module [5, 6, 39, 40, 42, 58, 60]. Among those works,
the most relevant to our FastlOV are the designs of virtual
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IOMMU [5, 58, 60]. vIOMMU [5] identifies that the page pin-
ning operation of DMA memory mapping in IOMMU pro-
hibits memory over-commitment. It introduces an IOMMU
emulation layer to delay the mapping establishment and per-
form mapping when a memory region is actually accessed
by DMA. colOMMU [58] relieves vVIOMMU’s performance
degradation problem by decoupling the DMA mapping and
page pinning process. V-Probe [60] further solves the intru-
siveness problem in colOMMU’s design by adopting an eBPF
based design. The delayed DMA memory mapping in those
virtual IOMMUs can reduce the startup cost of passthrough
I/0. However, such reduction is coupled with the enabling of
memory-overcommitment, which is not always the preferred
option in multi-tenant clouds [36]. By comparison, our Fas-
tIOV decouples the root cause of overhead, i.e., page zeroing,
from memory mapping to accelerate the startup, making it
more flexible and applicable whether overcommitment is
enabled or not.

VM/Container concurrency improvements. The major-
ity of related works in this category focus on optimizing the
startup performance of traditional containers. They reduce
startup time by accelerating container image distribution
[30, 37], introducing specific checkpoint or general template-
based runtime [19, 50], or providing warm startup solutions
with technologies like workload prediction and adaptive
pooling [55, 62, 65]. Another series of work optimizes the
startup of microVMs or VMs using techniques such as kernel
trimming [2, 32, 43], cgroup pre-creation [32], hypervisor
lock [48] and control plane redesign [43]. Those works focus
on optimizing the non-network part of the startup, and are
orthogonal to our work.

8 Conclusion

In the context of secure containers, SR-IOV enabled network
achieves a high data plane performance, a high deployment
density, but a poor concurrent startup performance. The goal
of this paper is to make up for its shortcoming. First, three
key bottlenecks are identified: (i) the contention time cost
of the coarse lock used in VFIO devset management, (ii) the
absolute time cost of the unnecessary DMA memory map-
ping and the deeply coupled memory zeroing in the mapping
procedure, (iii) the contention time cost of the VF driving ini-
tialization process. To conquer them, we propose a complete
solution named FastIOV with dedicated optimization meth-
ods like lock dissembling, unnecessary mapping skipping,
decoupled zeroing, and asynchronous VF driver initializa-
tion. In FastIOV, we first develop the two major components
including a portable Kernel module and an optimized CNI
plugin, and then apply several adoptable optimizations in
the could-vendor managed infrastructures. Compared to the
vanilla SR-IOV CNI, FastIOV reduces the VF-related startup
time by 96.1% and the end-to-end startup time by 65.7% with
negligible loss in the data plane performance.
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