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ABSTRACT
In this paper, we use empirical measurements to show that
container network startup is a key factor that contributes to
the slow startup of secure containers in multi-tenant clouds,
especially in the scenario of serverless computing where the
issue is pronounced by high-volume concurrent container
invocations. We conduct extensive and detailed analysis on
existing Container Network Interface (CNI) solutions and
show that even the best one doubles the startup time from
the no-network scenario. We show that the major cause of
the blowup in total startup time is that enabling network sig-
nificantly increases the contention among different startup
stages, particularly for global locks including the Routing
Table NetLink (RTNL) mutex lock and various spin locks. We
reveal that contending for these locks hinders startup perfor-
mance in three ways, including directly increasing stage time,
causing poor pipeline overlap and wasting CPU resources.
We propose and evaluate two preliminary solutions, virtual
device pooling and Bayes-based concurrency control, to op-
timize the startup time. Our results show that we are able to
reduce the container startup time by 58.9%, facilitating fast
and high-volume secure container invocations.

1 INTRODUCTION
Secure containers, such as Firecracker from AWS [2], Kata
Containers from OpenStack [40] and RunD from Alibaba
Cloud [49], provide strong isolation for applications in multi-
tenant clouds, and have attracted significant attention in
recent years. A notable use case for these secure containers
is in serverless services, like function compute (e.g. AWS
Lambda [4]) and NoSQL database (e.g. Azure Cosmos [10]).
These services typically feature short-lived application in-
stances, with lifecycles spanning just seconds. Cloud vendors
will face severe resource waste if the invocation time takes
up a large portion. Furthermore, these applications often
come with stringent Service Level Objectives (SLOs) that de-
mand tight control over invocation time. Meanwhile, given
the potential for serverless applications to experience surges
in demand, e.g. over 200 container invocation requests arriv-
ing near simultaneously on an Alibaba serverless platform
node [49], it not only calls for fast but also high-volume
secure container invocations.
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Figure 1: Concurrent startup time of different secure
containers with and without network. RunD(O) and
RunD(P) are the open-source and production versions
of RunD respectively. Startup time of RunD(O) with
concurrency of 200 and 400 are missing as RunD(O)
fails to work in such cases. Takeaway: (a) Enabling
network significantly increases startup time. (b) The
relative increase becomes larger with the no-network
startup time being further optimized (from Firecracker
to RunD(P)).

Recent work have focused on optimizing secure containers
to achieve fast concurrent invocations, but without incorpo-
rating network capabilities [2, 49]. Container-based applica-
tions often necessitate network communication to interact
with other cloud services, such as AWS’s S3 storage service
[5]. In multi-tenant clouds, in addition to the isolation pro-
vided by secure containers for resources like CPU and mem-
ory, network isolation is also imperative. Mainstream cloud
providers today like AWS[5], Azure[58] and GCP[32], all pro-
vide such network isolation using virtual Switch (vSwitch).
This arrangement of secure containers in conjunction with
vSwitch is recognized as the modern container infrastruc-
ture. We find that despite existing optimizations, none of the
systems conforming to the modern container infrastructure
can truly achieve both fast and high-volume invocations,
and the container network startup is a key factor that causes
the trouble. Fig. 1 shows our preliminary measurements
about the overhead of the multi-tenant container network
under different concurrency settings. The container network
is built with a classic ipvlan-based CNI plugin [22] and a
widely-used VXLAN-enabled vSwitch named Open vSwitch
(OVS) [66]. The ipvlan-based CNI has the shortest startup
time among CNIs that are compatible with all the different
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Net. Startup
Performance

Secure
Container

vSwitch-based
Multi-tenancy

Bankston et al. [13], KAPOČIUS et al. [38], Novianti et al. [61]
Lim et al. [50], Zhao et al. [85], Mentz et al. [57],Atici et al. [7]
Suo et al. [70], Zeng et al. [84], Park et al. [65], Boeira et al. [16]

× × ×

Suo et al. [72] × × ✓
Kumar et al. [44], Wang et al. [77] × ✓ ×

Suo et al. [71], Qi et al. [68] ✓ × ×
Our work ✓ ✓ ✓

Table 1: Existing measurement work on container networks. None of the work evaluates the concurrent startup
performance in modern container infrastructure.

secure containers. We observe that, when starting up with
a high concurrency of 400 containers, all secure containers
experience a significant increase in their end-to-end startup
time. As RunD(P) has a better optimized startup time tai-
lored for the no-network scenario, its relative time increase
incurred by enabling network is more pronounced, which
goes as high as 263%.

The need to optimize container network concurrent startup
thus necessitates a comprehensive understanding of the per-
formance of the various existing CNI solutions and the an-
swering of the following questions: What is the container
concurrent startup time in modern container infrastructure
using different types of CNI? What are the bottlenecks and
their causes? From what aspects can we relieve the bottlenecks
and reduce the startup time?
Unfortunately, we find that existing measurement work

on container networks cannot well answer these questions.
The majority of existing work do not consider the modern
container infrastructure. A secure container contains an inde-
pendent Operating System (OS) and is in fact a type of micro
Virtual Machine (VM). It requires extra virtualization to pass
the network devices to the container. Along with the setup
of vSwitch, enabling network becomes more complex and
costly than that in the traditional container case considered
by existing work, and its startup performance and bottle-
necks have not been thoroughly studied. Tab. 1 summarizes
the existing measurement work, most of them only measure
the data plane performance of different CNIs, trying to find a
way to achieve similar latency, bandwidth and throughput as
the host network [7, 13, 16, 38, 50, 57, 61, 65, 70, 84, 85]. Sev-
eral of them consider secure containers [44, 77] or vSwitch-
enabled multi-tenancy[72] in their data plane measurements,
but neglect the discussion of startup performance. Suo et al.
[71] and Qi et al. [68] measure the startup time of different
CNIs, but neither consider modern container infrastructure
nor dive deep into the startup process. Therefore, in this
paper, we evaluate the detailed startup process of container
networks in modern container infrastructure and conduct

extensive measurements to identify the performance, bottle-
necks and potential optimization opportunities. Our major
contributions are summarized as follows:

(1) We provide a comprehensive evaluation of main CNI
typeswith secure container in terms of concurrent startup
time, data plane performance and resource consumption.
We find that ipvtap-based CNI has the best overall per-
formance. It ties for first place in data plane performance,
and achieves 11.5% shorter startup time than the second
best, with less than 10% increase in host CPU consump-
tion. However, even with ipvtap, enabling network still
doubles the startup time from the no-network scenario.

(2) We perform an in-depth analysis of the startup process
and identify the global locks, particularly the RTNL lock
and the spin locks as the common bottleneck of all
different CNIs. Enabling network significantly increases
the contention among different startup stages, especially
for these global locks. We reveal that such contention
increases stage time, causes poor pipeline overlap and
wastes CPU resources, and thus blows up the total startup
time.

(3) We propose and evaluate two preliminary solutions to
optimize the startup process, including eliminating the
contention with CNI pre-creation and mitigating the
effect of contention by using concurrency control to
improve pipeline overlap and reduce CPU waste. We
design and implement a virtual device pool and a Bayes-
based concurrency control mechanism. Our evaluation
demonstrates that a full pre-creation of CNI reduces the
overall startup time by 49.8% at a high memory cost,
while the concurrency control mechanism reduces the
startup time by 18.8% at almost no cost. By combining the
two techniques, we achieve a total startup time reduction
of 58.9%.

(4) We will open source the entire software implementations
of our measurement tools and optimization tools as well
as our test dataset.
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Figure 2: vSwitch enabled container network.

2 BACKGROUND
2.1 Container network in multi-tenant

clouds
Nowadays major cloud providers such as AWS, Azure and
GCP all offer multi-tenancy capability based on vSwitch,
which isolates packets from different tenants with tunnel
protocols such as VXLAN [55] and Geneve [80]. Fig. 2 ex-
emplifies how vSwitch provides multi-tenant container net-
working, where tenant A and tenant B (marked with red
and orange color) each build containers within their own
overlay virtual networks, and the vSwitch can be regarded
as a layer-2 bridge with several virtual ports (vPort) bridging
the virtual NICs (vNIC) of containers and the physical NICs
(pNIC) of host servers.

For pod-to-pod networking, tenant A encodes a packet
with the source address 30.55.0.101 of a pod in host 1
and the destination address 30.55.0.102 of another pod
in host 2. The vSwitch in host 1 first ingresses the original
packet through the connection constructed by container net-
work interface (CNI) plugins [22] between the pod’s vNIC
and the vSwitch’s vPort. Then, it encapsulates the packet
with an overlay header with the source address 10.0.0.1
of host 1 and destination address 10.0.0.2 of host 2 and
egresses it to the vSwitch in host 2 through the physical net-
work infrastructure. The rest of the data path goes the inverse
way of decapsulation and decoding. For pod-to-Internet net-
working, tenant B encodes a packet destined for a public
service over the Internet. The vSwitch on host 2 recognizes
the public address 20.205.243.166 of that packet and
encapsulates it with host 2’s IP address 10.0.0.2 for send-
ing through the virtual gateway (vGateway).
Note that vSwitch is not the only way to enable a multi-

tenant container cloud. Taking community CNI plugins for
example, Flannel utilizes the Linux Kernel VXLAN as tunneling-
based isolation [29], Calico leverages user-defined routes to

separate packets from multiple tenants [18], and Cilium re-
lies on high-performance eBPF hackings to boost the perfor-
mance of the Linux Kernel VXLAN.However, cloud providers
insist on the vSwitch-based solution for the following rea-
sons. First, vSwitch offers the VXLAN-enabled network iso-
lation, which is more secure than user-defined routes based
isolation. Second, it provides the most abundant network
control features like Quality-of-Service (QoS) guarantee and
security group rules. As vSwitch, such as OVS, has strong
open-source community support, adopting vSwitch can bet-
ter benefit from the features and performance optimizations
brought by the open-source community. Third, other cloud
services like databases and computation use vSwitch-based
network, adopting the same solution allows tenants’ con-
tainerized applications to connect to these services seam-
lessly. In addition, for data plane performance, CNIs built
on vSwitch VXLAN can obtain reduced times of user-kernel
space traversing than those built on Linux Kernel VXLAN. In
line with the choice of current mainstream cloud providers,
this paper mainly discusses the network cold start procedure
for vSwitch-enabled container networks, especially those
built on OVS.

2.2 Network cold start for secure container
Traditional containers built solely on process-level isolation
technologies like cgroup and namespace suffer from se-
curity problems of privilege escalation, information disclo-
sure and covert channels [2]. Therefore, cloud providers
choose secure containers when launching their cloud-native
services. Two main technical routes for secure containers are
investigated. The first category like Google gVisor [35, 82]
restricts shared kernel functions and thus avoids unsafe oper-
ations. The others like Kata Containers [40], AWS Firecracker
[2] andAliCloud RunD [49] run containers inside lightweight
micro VMs for isolation. The latter is more widely adopted
in both the industry and the open-source community for a
better balance between performance and security [6], and it
is the focus of our work.

As shown in Fig. 2, the state-of-the-art secure containers
are built with two layers of the isolation stack [49]. The first
layer is the sandbox environment, it leverages cgroup and
namespace to allocate hardware resources among secure
containers. The second layer, denoted by microVM, virtual-
izes a lightweight guest OS to run the tenant’s containers.
To enable network, the CNI plugin must provide a complete
data path that passes through the full stack from host, sand-
box, and microVMs to container. We dig into the source code
of Kata Containers and summarize the three-step end-to-end
procedure of network cold start in secure containers in Fig. 3.
Note that the underlying logic of the procedure is consistent
across other secure containers like Firecracker and RunD.
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(1) NetNS Creation: After receiving a creation command
from the container orchestrator like Kubernetes (K8s) [42]
through the standardized interface like container runtime
interface (CRI), the container engine like Containerd [24]
first creates a new container network namespace (NetNS).
This NetNS is isolated from the host NetNS and other con-
tainer NetNSs in terms of network devices (NetDev) and
configurations like routing tables and access control policies.
(2) Primary NetDev Creation: Then, the container engine
invokes the CNI plugin to create the primary NetDevs. The
purposes of the primary NetDevs are to traverse the host
and container NetNS, and provide a NetDev in the container
NetNS, referred to as the CNI endpoint, to wait to be con-
nected to the container. Fig. 3 shows the primary NetDevs
created by the vSwitch-enabled CNI plugin with Veth Direct
mode, in the green color. A pair of veth NetDevs transfer
packets between twoNetNSs. The one in the container NetNS
is the CNI endpoint, and the CNI plugin allocates a valid IP
for it. The one in the host is bound to a vPort in vSwitch,
and the vSwitch is then configured with network policies to
satisfy user requirements such as Quality of Service (QoS)
and security group rules.
(3) Secondary NetDev Creation: Last, the container en-
gine invokes the container runtime through the standardized
interface like open container initiative (OCI) to create the
secondary NetDevs which is used to traverse the host kernel
and the guest kernel. In Kata Containers, a tap NetDev is
created in the container NetNS which connects the veth
through Linux traffic control (TC) filter. TC filter is a feature
in the Linux operating system that enables fine-grained traf-
fic and traffic manipulation. It can connect two NetDevs by
simply redirecting traffic between them. Finally, the QEMU
hypervisor virtualizes and passes the tap to MicroVM.

Only when both the primary and secondary NetDevs are
correctly created and connected can the pod visit its con-
tainer network. Compared with the traditional container
infrastructures considered in existing work where network

Primary
NetDev CNI plugins

veth

Flannel[29], Antrea[1], ovs-cni[63],
Kube-OVN[41], Weave Net[78],

Kube-router[43], AWS bridge CNI[8],
GCP Kubenet CNI[31], Azure Overlay CNI[11],

Azure Kubenet CNI[11]
eBPF-
based
veth

Cilium[20], Calico[18],
Isovalent[36], Azure eBPF CNI[11],

GCP Dataplane V2[31]
macvlan
& ipvlan

Tungsten Fabric[74], DANM[25]

vhost-
user

Kube-OVN[41], AWS VPC CNI[8],
GCP VPC CNI[31], Azure VNET CNI[11],

Intel Userspace CNI[76]

Table 2: Summarization of multi-tenant CNI plugins.

setup only includes the creation of NetNSs and the pair
of veth NetDevs, the existence of secure container and
vSwitch further complicates the setup process, and the startup
performance and bottlenecks in such case remain to be illus-
trated.

3 MEASUREMENT METHODOLOGY
3.1 Selected CNIs for measurement
To select representative CNI plugins, we have surveyed solu-
tions [1, 18, 20, 29, 36, 41, 43, 74, 78] from the cloud-native
community, i.e., CNCF project landscape for the container
network [21], cloud providers including AWS, Azure and
GCP [8, 11, 31], and several corresponding open-source projects
[63, 76]. The key differences of the various CNIs boil down to
how they implement the primary NetDevs andmulti-tenancy.
We classify the existing CNIs in Tab. 2 based on the type of
the primary NetDevs, of which there are mainly four types,
i.e. veth, ipvlan & macvlan, vhost-user and eBPF-
based veth. For multi-tenancy implementation, as we have
discussed in §2.1, the mainstream providers adopt OVS, and
their implementations of the various CNIs are, in fact, the
use of the corresponding primary NetDevs on top of OVS,
like the Azure version of Cilium [9]. Therefore, our work
follows the same implementation approach and combines
the four types of primary NetDevs with OVS to represent
the various CNIs shown in Tab. 2.
Recall that binding primary NetDevs to vPorts and con-

figuring the vSwitch is an important network setup stage
introduced by themodern container infrastructure, and it can
be a potential startup performance bottleneck. Generally, the
time cost of this stage is related to the tenant sharing granu-
larity of vPorts and the number of network rules configured.
Our work intends to measure and discuss the effect of these
factors. As shown in Fig. 4, the tenant sharing granularity of
vPorts can be summarized as the following modes:
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Figure 4: Different implementations of multi-tenancy for vSwitch-based CNIs.

(1) Direct mode: In this mode, one vPort of a vSwitch serves
only one pod of a certain tenant without any sharing mech-
anism. Fig. 4a and Fig. 4b depict two types of the direct
mode implemented with a pair of veth NetDevs and a pair
of vhost-user and virtio-net NetDevs [67] respec-
tively. Their main differences are that: (i) veth is based on
full host kernel network stack, while vhost-user uses
memory sharing techniques to bypass several host kernel
operations. (ii) veth requires the help of secondary Net-
Devs to traverse the guest kernel, while the virtio-net
NetDev paired with vhost-user can be directly passed to
the guest.
(2) Single-tenant sharing mode: In this mode, one vPort
connects all pods of a single tenant, as shown in Fig. 4c.
Compared to the direct mode, vPort sharing can efficiently
reduce the number of vPorts, thus it reduces the resource
usage and potentially also the startup time. But it has to
share the vPort-specific network policy, e.g., QoS, among all
pods of the tenant. ipvlan is the standard Linux NetDev
that implements data-path sharing of a NetDev, and another
choice for single-tenant sharing isipvtapNetDev, in which
a tap is hooked on one ipvlan’s MAC layer to transfer
packets. Since the tap of the ipvtap can be directly passed
to the guest, the secure container runtime doesn’t need to
create an additional tap and its TC-based connection hook
with the primary NetDev for the packet traversing. We also
include ipvtap as a type of CNI in our measurement.
(3) Multi-tenant sharing mode: In this mode, all pods of
all tenants share just one vPort, as shown in Fig. 4d. Such
global sharing among all tenants requires offloading packet
routing and network policy execution from the vSwitch to
the CNI plugins. Usually, the XDP hook controlled by the
injected eBPF program and the TC hook controlled by the
iproute2 user interface can satisfy these requirements
[20]. This mode is expected to have the least overhead of
the vPort creation. Thus besides the major CNI types in
Tab. 2, we also include a multi-tenant sharing CNI called
tc-routing as illustrated by Fig. 4d.

3.2 Measurement testbed setup
Hardware setup. Our testbed includes two servers, each
server has a 2-socket NUMA-enabled Intel Xeon Platinum
8369B 2.9GHz CPU with 32 physical cores per socket, 80KB/
1280KB/48MB L1/L2/L3 caches, 512GB RAM, and a 200Gbps
Mellanox ConnectX-6 pNIC. We conduct the concurrent
startup experiment on a single server as the invocation of
containers on different servers does not affect each other.
We also measure the data-plane performance, i.e. pod-to-pod
network communication intra- and inter-servers, alongside
resource consumption to ensure that CNIs with faster startup
speeds do not have significant deficiencies in data plane
performance and resource consumption. For inter-server
network communication, we connect two servers’ pNICs
directly through an optical fiber.
Software setup. The servers run CentOS 8 operating system
with Linux kernel v4.18.0. The container and network soft-
ware include Containerd v1.7.3 [24], Kata Containers v3.2.0
[40] and OVS v3.1.2 [30]. Recall that in Fig. 1, Kata secure con-
tainer has worse startup performance compared with RunD,
thus it does not seem to be the best choice. However, the
industry version of RunD, i.e. RunD(P), is closed-source and
the open-source version, i.e. RunD(O), fails to work when
the startup concurrency reaches 200. Therefore, our per-
formance measurement and bottleneck analysis are based
on Kata, which is the best-performing one with both open-
source code and the support for high startup concurrency.
Our findings on Kata can be generalized to other secure con-
tainers as their network setup processes follow the same
logic. We implement the vSwitch-enabled multi-tenant CNI
plugins summarized in §3.1 by integrating open-source CNI
projects [20, 23, 63, 76] with OVS and secure containers. We
use the Kata-qemu configuration and assign a memory of
512MB for each container. The containers use the default
microVM kernel (v5.19.2) and image (alpine 3.15) provided
by Kata. In our measurements, the startup of a container is
considered successful when the microVM finishes launching
with its network enabled and accessible from other contain-
ers.Wemaintain a persistent container that performs pinging
to check the network accessibility of the microVMs.
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Figure 5: Container concurrent startup time with dif-
ferent CNI types (concurrency = 400).

3.3 Performance metrics and tools.
Concurrent startup performance. Assuming a concur-
rency of 𝑁 secure containers, we define the metric of con-
current startup time as the elapsed time from when the con-
current startup command is issued to when the last of the 𝑁
containers successfully starts. A shell script is responsible
for simultaneously starting 𝑁 processes to initiate container
startup requests to the Containerd daemon, and counting
the end-to-end time consumption. We use 𝑁 = 400, align-
ing with the configuration in the RunD paper [49], which
is based on statistical analysis from the Alibaba serverless
platform. To break down the startup procedure and identify
bottlenecks, we develop a time logging tool and integrate
it with the container engine, runtime and CNI plugins to
inspect the detailed time consumption of each component.
This tool employs memory caching and asynchronous file
writing techniques to keep the additional time overhead in-
troduced by the logging process to less than 3%, thereby
ensuring minimal impact on the overall time.
As mentioned in §3.1, the setup and configuration of the

vSwitch introduces variables like the number of user-defined
QoS, security group rules, and the number of tenants that can
impact the total startup time. For the main measurements in
§4.1.1, we assume that only one tenant exists and no QoS and
security group rules are applied. Then we study the impact
of these variables in §4.1.2.
Data-plane performance and resource consumption.
We allocate 4 vCPU cores to each container, useiperf3 [37]
to collect throughput (Gbps), and use the RR (Request-Response)
test in netperf [60] to measure network latency (𝜇s). We
report CPU utilization of both the host and the secure con-
tainer during startup and communication, respectively. The
CPU utilization is collected using the psutil library of
python3.6.

4 CONCURRENT NETWORK STARTUP
PERFORMANCE AND BOTTLENECKS

4.1 Measured startup performance
4.1.1 Concurrent startup time.
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Figure 6: Startup time breakdown.

Overall performance. Fig. 5 shows the concurrent startup
time of each CNI type. We can observe that all CNI types
incur obvious startup time overhead compared with no-
network startup ( 1○). eBPF achieves the worst performance,
increasing the startup time by 18X. Ipvtap and macvtap
achieve the best performance, however, they still double the
total startup time compared with no-network startup, in-
dicating the need to optimize the network startup process.
Note that the performance of macvtap is nearly identical to
that of ipvtap because they share similar setup procedures
and data paths. The same goes for macvlan and ipvlan.
Thus we will ignore macvlan and macvtap, and focus on
ipvlan and ipvtap in the rest of this paper.
Time consumption breakdown. Fig. 6 shows the time
breakdowns of startup processes in different conditions. Of
the five stages shown in Fig. 6, NetNS refers to creating new
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Figure 7: Impact of enabling QoS and security group
rules on container startup time.

network namespaces, AddCNI means creating primary Net-
Devs and configuring vSwitch, Cgroup refers to isolating
container resources with Linux cgroup, AttachIf refers
to creating and setup secondary NetDevs, and StartVM
means creating microVM. These five stages constitute more
than 90% of the total startup time. We find that, first, the
overhead of enabling network does not only come from the
network setup operations as illustrated in Fig. 3, but also
largely from the increased time of other stage not directly
related to network setup, i.e. Cgroup. We will show in §4.2
that such bottleneck comes from the contention for global
locks. Similarly, contention for locks is the underlying rea-
son for the noticeable time increase in StartVM stage of
vhostuser.

Second, by comparing (b) and (e), we see that the superior
performance of ipvtap mainly comes from the reduction
of Cgroup time. One might expect ipvtap to achieve a
shorter AddCNI time since ipvtap, as the sharing mode
CNIs, reduces the number of created vports on OVS. How-
ever, its AddCNI time is much larger compared with that of
veth. That is because although ipvtap reduces the vport
creation time, the creation of ipvtap device itself incurs a
larger overhead than creating veth pairs and thus increases
the overall AddCNI time.

Third, poor startup performance of eBPF is caused by the
enlarged AddCNI time. We find that an eBPF program re-
quires recompilation at each startup process to implement its
tenant subordination and corresponding net policy, causing
high time costs. Such results suggest that eBPF-based CNIs
are currently unsuitable for supporting the ever-growing
short-lived serverless applications, so we neglect their explo-
ration in the following sections.

Takeaway 1: Existing CNIs all incur significant time
overhead to the concurrent startup of secure containers.
The overhead comes from both the time costs of introduced
network operations and the time increase of other stages
like operating cgroup.
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Figure 8: Impact of the number of tenants on container
startup time.

4.1.2 Impact of variables on startup time.

QoS and security group rules. We configure two QoS
rules for each vport to control the average and peak band-
width of the ingress and egress traffic. Results in Fig. 7a
show that enabling user QoS incurs a 48.4% startup time in-
crease on veth but small increase (< 4%) on other CNIs. For
ipvlan, ipvtap and tc-routing, all containers share
a vport on OVS, thus the QoS rules are only configured for
one port and incur small overhead. vhostuser uses the
dpdkvhostuser vport type in OVS, and its QoS rules are
implemented using DPDK library instead of Linux TC like
other types of vports. The DPDK library has high configura-
tion efficiency and incurs small overhead. Unlike QoS rules
that are configured at vport level, security group rules are
configured for each pod using OVS flow tables. We increase
the number of rules per pod from 0 to 100. Results in Fig. 7b
show that adding security group rules increases the startup
time of ipvlan, ipvtap and tc-routing only when
the number of rules per pod exceeds 10. This is because the
insertion of security group rules does not cause contention
with other startup stages and can be hidden in the startup
pipeline. It only affects the overall performance when its
time cost becomes dominant in the pipeline. We will further
analyze the pipeline in §4.2.1.
Number of tenants. Fig. 8a demonstrates the effect of the
number of tenants on the startup time of the sharing mode
CNIs. Essentially, the number of tenants served on one server
determines the number of vports created on OVS for single-
tenant sharing CNIs, i.e. ipvlan and ipvtap, but it does
not affect the number of vports for multi-tenant-sharing CNI,
i.e. tc-routing. We increase the number of tenants from 1
to 200, and distribute the 400 containers evenly to each tenant.
It should be noted that the mappings between tenants and
containers have no impact on startup time, a fact that we have
confirmed. This is because such mappings influence neither
the number of vports nor the number of NetDevs. The results
show that, when no QoS rule is enabled, the startup time of
ipvlan and ipvtap does not increase with the number of
tenants. This is because the time cost of creating more vports
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Figure 9: Data-plane performance of different CNIs.
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Figure 10: Resource consumption of different CNIs.

is small and can be hidden by other startup stages. When
QoS rules are enabled, increasing the number of tenants
causes more QoS rules to be configured for ipvlan and
ipvtap. Since configuring QoS rules has a relatively larger
cost than creating vports, it incurs noticeable overhead on
the startup time. As a result, the startup time of ipvlan
and ipvtap slightly exceeds that of tc-routing as the
number of tenants reaches 200.

Takeaway 2: Tenant sharing granularity affects the num-
ber of vports and QoS rules on vSwitch. The time cost of
creating vports is minor and not a determining factor of
startup time. In contrast, configuring QoS rules can incur
noticeable overhead on single-tenant sharing CNIs when
the number of tenants is large, in which case the multi-
tenant-sharing CNI tc-routing can slightly outper-
form the former.

4.1.3 Data-plane performance and resource consumption.
Fig. 9 shows the intra-node and inter-node data-plane per-
formance of different CNIs. In general, CNIs of the sharing
mode ( 3○- 5○) achieve similar throughput and latency. For
intra-node communication (Fig. 9a), the direct mode CNIs
( 1○- 2○) have relatively lower throughput because their intra-
node traffic needs to traverse vSwitch, while the traffic of

sharing mode CNIs can be directly forwarded by shared
vports. Performing inter-node communication slightly de-
grades the throughput compared with intra-node communi-
cation (degradation < 10%), but significantly increases the
communication latency. It is noticeable that vhostuser
has lower latency than others, as the primary NetDev of
vhostuser can be virtualized and directly passed to theMi-
croVMwithout having to rely on secondary Netdevs (demon-
strated in Fig. 4b), which shortens the communication path.
We report containers’ CPU utilization during intra and

inter-node communications in Fig. 10a and Fig. 10b. The CPU
utilization of vhostuser is relatively higher while those of
other CNIs are at a similar level. Fig. 10c shows the change in
host CPU utilization during the concurrent startup process.
We also sum the utilization in each second and report the
results in Fig. 10d to show the total CPU consumption. We
observe that ipvlan consumes the least CPU resources and
the consumption of ipvtap is only slightly higher.

Takeaway 3: With data plane performance and resource
consumption considered, we can conclude that ipvtap-
based CNI achieves the best startup time for secure con-
tainers with less than 10% increase in host CPU consump-
tion compared with the second best CNI type.
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Figure 11: Pipeline model of the concurrent startup
process. Containers (Pods) pass through each stage to
perform the startup operation and the overall time is
dominated by the most time-consuming stage.
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Figure 12: Breakdown of startup time with different
number of Security group Rules per Pod (SR/Pod).

4.2 Bottleneck analysis
As existing CNIs incur high overhead to the startup process,
it is important to understand bottlenecks and seek further
optimizations. In this section, we analyze the bottlenecks
from a pipeline perspective. We divide the effect of enabling
network as non-competitive and competitive time overhead,
and show how the contention for locks in the pipeline in-
creases the competitive time overhead in three ways.

4.2.1 Non-competitive time overhead. The concurrent startup
process can be regarded as a pipeline model. Fig. 11 shows
four stages in the startup pipeline as an example. The contain-
ers pass through each stage to perform the corresponding
startup operation, and the total time cost is determined by
the stage with the highest time cost. As an example, we break
down the startup time of ipvtap from Fig. 7b and report the
results in Fig. 12. The results display the time when AddCNI
stage finishes inserting security group rules to vSwitch and
when the whole startup process ends. Inserting more Secu-
rity group Rules (SR) per pod increases the AddCNI time,
but the total time is barely affected at first, i.e., SR/Pod=0,10.
This is attributed to that AddCNI itself is not the dominant
stage, and the insertion of security group rules operates
OVS flow tables which does not cause contention with other
stages, thus the increased time can be overlapped behind
other stages. Similar examples include the numerous device
configuration operations during StartVM, which, having
no contention with other stages like AddCNI, cgroup, etc.,
can also be overlapped in pipeline. We refer to time overhead
like this as non-competitive time overhead. Only when the

Times of obtaining
RTNL lock

RTNL lock
contention time

no-network 803 162 ms
veth 19992 9.8 s
ipvlan 16542 11.7 s
ipvtap 6105 9.2 s

tc-routing 18859 14.6 s

Table 3:RTNL lock obtaining times and total contention
time. Concurrent startup without network also obtains
RTNL lock as it also setups the netprio cgroup.

non-competitive time overhead becomes dominant of the
pipeline, i.e., SR/Pod=50,100, it incurs an obvious increase in
the overall startup time.

Takeaway 4: The concurrent startup process is a pipeline
model. The time overhead of network setup operations
can be overlapped behind other pipeline stages if those
operations neither are the dominant stage nor contend
with other stages.

4.2.2 Competitive time overhead. When network setup op-
erations contend with other stages and increase startup time,
we refer to the additional time as competitive time overhead.
We dig into the cause of the contention and identify that
global locks, particularly the RTNL mutex lock and various
spin locks, are the ones to blame.
The RTNL mutex lock in Linux systems is a specialized

synchronization mechanism designed to protect the Linux
networking data structures during operations that alter the
networking configuration, such as creating or removing net-
work devices. Its utilization is crucial in maintaining the
integrity and performance of network operations within the
Linux kernel. The operations to enable network for secure
container severely increase the contention for the RTNL lock.
As illustrated in Tab. 3, when concurrently launching 400
containers, even with the best-performing CNI, ipvtap,
the RTNL lock is obtained 6105 times in total, increased
by 7.6X compared with no-network startup. Its RTNL lock
contention time covers 9.2s of the total startup time, and
over 59.0% (62.3% for veth, 74.7% for ipvlan and 69.7%
for tc-routing) of the RTNL lock obtaining operations
are issued by the AttachIf and StartVM stages where
the primary NetDev and secondary NetDev are connected,
and the secondary NetDev is virtualized to the microVM.
Those operations are introduced by secure containers and
make enabling network more costly compared with that for
traditional containers.
The first way RTNL lock contention affects the competi-

tive time overhead is the direct time increase of related stages.
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Figure 13: Example of two stages contending for global
locks. Time cost is labeled on the block. Prioritize the
obtaining of Lock1 in stage-2 reduces the overall time.

A typical example is the Cgroup shown in Fig. 6. Compared
with the no-network case in Fig. 6a, the use of ipvlan CNI
in Fig. 6d greatly increases the Cgroup time and contributes
the most to the time overhead. The cause is that the setup of
netprio type of cgroup requires the RTNL lock and thus
suffers from contention. The contention also accounts for
why ipvtap achieves better startup performance, since the
endpoint created by ipvtap is a tap NetDev which can
be directly passed to microVM, it requires neither additional
secondary NetDevs nor TC filter to connect. As creating
secondary NetDevs and adding TC filter rules also require
the RTNL lock, avoiding these operations reduces the con-
tention. In contrast, tc-routing not only uses TC filter
rules to connect the endpoint and the secondary NetDevs,
but also sets up additional rules to route the traffic from the
vport to each container, further increasing the contention
and leading to its poor startup performance.

Takeaway 5: Enabling network for secure containers in-
curs severe contention for the global RTNL lock and sig-
nificantly increases the time of stages involving the lock,
like operating cgroup.

The second way RTNL lock contention increases competi-
tive time overhead is that the uncontrolled order of obtaining
lock leads to poor pipeline overlap. Fig. 13 is a simple exam-
ple to illustrate how the order of obtaining the same lock in
different pipeline stages affects the overall time. Assuming 3
containers are traversing a two-stage pipeline, as shown in
Fig. 13(a), the first stage requires obtaining Lock1, e.g. the
global RTNL lock, and the second stage requires first obtain-
ing Lock2, e.g. the global cgroup_mutex lock, and then
obtaining Lock1. This example corresponds to how locks are
obtained when setting up netprio group. The best order is
to prioritize obtaining Lock1 in stage 2 as shown in Fig. 13(c),
which leads to a total time cost of 45s. However, when two

stages contend for Lock1 freely, the obtaining order is un-
controlled. In the worst-case scenario shown in Fig. 13(b)
where the obtaining of Lock1 in stage 1 is prioritized, there
is nearly no overlap between the two pipeline stages. As a
result, the total time becomes 62s, increased by 37.8%.

Takeaway 6: The uncontrolled order of obtaining global
locks by different stages leads to poor pipeline overlap and
increases the overall startup time.

The third way the competitive time overhead is increased
is that the contention for spin locks wastes CPU resources
and thus stalls the startup. Unlike other locks that put the
waiting thread to sleep, a spin lock causes the thread to
continuously check (or "spin") for the lock to become avail-
able. This is efficient if threads are only expected to hold
the lock for a short period of time, but can be wasteful of
CPU resources if held for longer durations. When a large
amount of containers starts concurrently, they contend for
the global spin locks in network configuration and cgroup
operations like the css_set_lock, and can spend a lot of
time spinning on the locks. By using eBPF to sample the lock
spinning time, we discover that enabling network increases
the spinning time by at least 105% with the different CNIs,
resulting in more CPU waste. Our subsequent experiment in
§5.2 will demonstrate that mitigating spin lock contention
through concurrency control can effectively reduce CPU
consumption and achieve overall startup time reduction.

Takeaway 7: The contention for spin locks causes in-
creased CPU waste and contributes to the competitive time
overhead.

Based on the major bottlenecks analyzed above and how
they affect the startup time, we discuss the possible optimiza-
tion approaches in the next section.

5 ACCELERATING CONCURRENT
NETWORK STARTUP FOR SECURE
CONTAINERS

The optimization solutions can be categorized based on
whether they are implementation-specific or more general
techniques. Implementation-specific optimization requires
analyzing the specific operations in each stage and improving
their efficiency. For the major bottleneck, i.e. the contention
of global locks, the implementation-specific optimization is
to redesign the locks with the corresponding data structures
they protect. However, such redesign is typically difficult to
perform [79] for system-wide locks like the RTNL lock.
Our focus is more on general optimization techniques.

Centering around the three ways that global lock contention
10
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Figure 14: Virtual device pooling. The user-free virtual
devices are fetched from precreated pools (orange col-
ored) and user-specific ones are created in real time
(green colored).

leads to competitive overhead, i.e., direct time increase of the
contended stage, poor pipeline overlap and CPU waste as men-
tioned in §4.2.2, we first evaluate the effectiveness of virtual
device pooling technology in eliminating the contention and
discuss its memory cost (§5.1). When the memory resource is
scarce, we propose and evaluate another technology named
multi-stage concurrency control to mitigate contention by
balancing the startup pipeline and reducing the CPU waste
(§5.2). The concurrency control technique boosts the concur-
rent startup performance in a very lightweight way and can
further work with pooling to reduce startup time.

5.1 Virtual device pooling
Pooling is a common technology that accelerates time-consuming
operations at the expense of certain precreated resources
[14, 28, 52, 59, 75]. We explore pooling to eliminate the stage
contention from the source, and our contributions are to
(i) explore which stages in the network startup of secure
containers can be pooled, (ii) verify the upper limit of the
performance gain brought by this technology, and (iii) point
out its shortcomings to inspire subsequent works.
Design: Taking the ipvtap CNI as an example, Fig. 14 illus-
trates whether each detailed stage can be pooled in the net-
work startup procedure. First, the NetNS is obtained from a
pool ( 1 ). Then, the two main NetDevs, vPort and ipvtap
are fetched instantly from their pools ( 2 and 3 ) when the
CNI plugin is invoked. One vPort belonging to one ten-
ant’s VXLAN group is connected with𝑀 ipvtap, where𝑀
stands for the maximum number of secure containers that
can be created for one tenant. Finally, the operations involv-
ing user-specific configurations such as IPAM and network
policy appliance ( 4 ) and newly created container instances
such as vNIC creation ( 5 ) are left to run in real time.
Implementation: We implement a pooling agent with a
simple HTTP interface. The pooling agent invokes OVS and
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Figure 15: Startup time breakdown. Precreation effec-
tively eliminates the time overhead. The time differ-
ence is within 5% compared with no-network startup.

NetLink interfaces for the precreation. One pooling agent
is deployed on each physical server to serve the local con-
current fetching requests, which is scalable to the future
clusterized deployment. In the implementation of the NetNS
pool, since the container NetNS inside the microVM is al-
ready isolated, we can avoid creating the excessive NetNS
outside the microVM (as shown in Fig. 3) and maintains
a global NetNS, i.e., the host NetNS in the pool. It should
be noted that the speedup in time comes from the pooling
operation rather than the reduced number of NetNS.
Results: Fig. 15b shows that the time cost of concurrent
network startup with virtual device pooling is only 10.5s.
Compared to the non-pooling result of 20.7s in Fig. 6e, it
achieves a significant performance gain of 49% time reduc-
tion. Moreover, the time cost is comparable to that when the
network is disabled (shown in Fig. 15a) with an overhead
within 5%. The corresponding time breakdowns illustrate
that, although there still are operations that cannot be pooled
in advance, other pipeline stages can hide their time costs.
Discussions: Pooling achieves significant performance gain
but can incur large memory overheads. As the number of ten-
ants scheduled to the server and the number of containers of
each tenant are not known in advance, it’s challenging to pre-
determine the total number of vports or the requisite quantity
of ipvtaps for each vport. The straightforward solution is to
create 400 vports and each with 400 ipvtaps. We observe
that a memory cost as high as 50GB is incurred, which is a
high cost to the cloud provider. Therefore, we call for sub-
sequent research work to improve the efficiency of pooling.
Potential solutions like demand prediction [15, 33, 59] for
each user or identifying the best trade-off between pooled
and non-pooled stages can be further explored.

5.2 Multi-stage concurrency control
In some scenarios where memory resource for running con-
tainer network is strictly controlled, e.g., bare metal servers,
it is difficult to deploy optimization technologies like pooling.
Therefore, we expect to explore techniques that can achieve
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Figure 16: Design of multi-stage concurrency control.
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Figure 17: Bayes-based concurrency optimization re-
sults. Total startup time is reduced by 18.8%.

a noticeable performance gain but with lower resource costs.
The observation of poor pipeline overlap (Takeaway 6) and
CPUwaste (Takeaway 7) problems inspires us to apply proac-
tive concurrency control to schedule how the different stages
obtain locks and reduce unnecessary wait on the spin locks.
Design: As shown in Fig. 16, we divide the startup pro-
cess into 4 major stages according to our previous timeline
breakdown and contention analysis. We apply different con-
currency limits on each of the stages. The general idea is
to control the number of containers in each stage to adjust
the priority of obtaining locks and avoid unnecessary wait
on the spin locks. To identify these concurrency limits,
we adopt a classic black-box optimization technology called
Bayes optimization [17], which is commonly used in hyper-
parameter determination in machine learning. The Bayes
optimizer iteratively adjusts the concurrency limits based
on the posterior probability of the end-to-end feedback and
optimizes the overall startup time.
Implementation: The concurrency control is implemented
with a locally centralized agent similar to that in the previ-
ous subsection. The agent uses semaphores based on HTTP
requests and replies to control the number of containers
entering each stage. The Bayes optimizer is trained offline
with a fixed concurrency of 400 containers, and we adopt the
best set of parameters after 50 iterations. The optimization
averagely takes 3 hours which is an acceptable cost.
Results: Fig. 17a and Fig. 17b depict the startup time break-
down of ipvtap when disabling and enabling concurrency
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Figure 18: CPU consumption with concurrency control.
Concurrency control reduces both the maximum CPU
utilization and the total CPU usage.
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Figure 19: Startup time reduction with concurrency
control. Customize: run Bayes directly with each con-
currency. Generalize-400: applying parameters ob-
tained with 400 concurrency to other concurrencies.

control. The end-to-end startup time is reduced by 18.8%,
from 20.9s to 17.0s. We observe a significant reduction in the
CPU consumption of the startup process as shown in Fig. 18,
indicating that concurrency control effectively reduces CPU
waste.
Discussions: The most common concern about learning-
based optimization methods is generalizability. We believe
that changes in hardware setup or the CNI implementations
do require re-training. But the learned parameters are sup-
posed to generalize to different concurrency settings, as
demonstrated in Fig. 19. When applying the concurrency
control parameters trained with 400 containers to test cases
of other concurrencies, the time reductions are still obvious.
And the gaps to the results of running Bayes optimization
directly with each concurrency are relatively small. Note
that the results of running Bayes directly with 600 and 800
concurrencies are slightly worse than those of applying the
parameters of 400 concurrencies. This is because higher con-
currency enlarges the search space of Bayes optimization
and makes it more difficult to learn. Another issue worth
discussing is the splitting granularity of the concurrency-
controlled stages. Fine granularity can potentially improve
the optimization performance but also expands the search
space of Bayes optimization and increases the difficulty of
learning. We leave exploring more fine-grained concurrency
control algorithms as a future research topic.
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Figure 20: Startup time (400 containers) using different
techniques. Combining pooling with concurrency con-
trol (represented byCC) further accelerates the startup.

5.3 Pooling + Concurrency Control
Apart from being an alternative that optimizes start time
at a low cost, our concurrency control technique can also
be combined with pooling to further accelerate the startup
process. The optimization results using different techniques
are summarized in Fig. 20. Although pooling already reduces
the startup time to a comparable level as that without net-
work, concurrency control still achieves a time reduction of
18.1% when applied. Such improvement results from that the
no-network startup also suffers similar problems like CPU
waste caused by the contention for spin locks. Overall, our
combined techniques reduce the concurrent startup time of
network-enabled containers by 58.9%.

6 RELATEDWORKS
In §1, we have introduced the related works about the mea-
surement part in detail and illustrated our work’s position.
Thus, we mainly discuss the related works about the opti-
mization part in the following.
Data-plane optimization of container networks. In re-
cent years, plenty of works have shown interest in pushing
the data-plane performance of container networks to the
limit bounded by the host network [19, 46, 47, 51, 87]. Several
works try to optimize CNI data plane’s pipeline parallelism
[47] or its resource allocation [46], while the others manage
to avoid the VXLAN’s overhead by designing a connection-
level overlay with either kernel optimization [87] or eBPF
hacking [19, 51]. However, none of these works consider
network startup performance, and some even sacrifice it as
shown by our previous analysis for eBPF based CNIs.
Speeding up the startup of containers or VMs. The ma-
jority of related works focus on the startup performance of
containers but without any network connection [27, 48, 53,
62, 69, 81, 86]. They either reduce cold startup performance
by accelerating container image distribution [48, 53] and
introducing specific checkpoint or general template-based
runtime [27, 62], or provide the warm startup solutions with
technologies like workload prediction and adaptive pooling

[69, 81, 86]. LightVM [56] and Bacou et al. [12] optimize the
boot time of VMs, but they neglect either the effect of en-
abling network or the effect of concurrent startup. Fewworks
optimize the network startup of containers[59, 75]. PCPM
pre-creates multiple pause containers with the network con-
nection and manages the assignment and recycle dynami-
cally [59]. Particle [75] analyzes the network startup process
for traditional containers and utilizes network namespace
sharing and IP sharing technique to reduce the time cost of
moving NetDevs across network namespaces. However, it is
not the major bottleneck with secure containers.
Lock optimization. Locks are crucial to application per-
formance and their optimization has gained the attention
of many works. The most effective way to optimize lock
contention is to redesign the corresponding data structures
the locks protect and reduce or even remove the use of locks.
Such an approach is typically application specific, and thus
a series of work [3, 54, 73, 83] only focus on providing tools
to profile the behavior or identify the bottlenecks of locks,
and leave the redesign to application developers. However,
Westphal et al. [79] digs into the RTNL lock and shows that
it is difficult to redesign or remove. Another series of works
propose more general approaches to optimize the perfor-
mance of kernel locks [26, 34, 39, 64]. Kashyap et al. [39] and
Dice et al. [26] reduce the cost of accessing locks by making
the locks NUMA-aware, TClocks [34] reduces the cost by
avoiding the transfer of lock-guarded shared data. Those
works are orthogonal to our concurrency control method.
SynCord [64] abstracts key behaviors of kernel locks and
performs advanced scheduling policies on them, but it re-
quires the co-design of user applications. Hybrid Lock [45]
reduces resource usage by dynamically switching between
mutex and spin locks with eBPF, however, it also incurs
the modification in both user-space programs and kernel
functions.

7 CONCLUSION
In this paper, we use extensive empirical measurements to
show that network startup is one of the key factors that con-
tribute to the overall time of secure container startup. We
dive into this problem and show that enabling network sig-
nificantly increases the contention among different startup
stages, especially for globals locks including the RTNL mu-
tex lock and spin locks, and thus becomes the bottleneck
of achieving fast and high-volume secure container invoca-
tion. We propose and explore several solutions, including
virtual device pooling and Bayes-based concurrency control,
to address this problem. We believe that the issues we discov-
ered are insightful for future research in the area of secure
container-based applications.
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